474. Ones and Zeroes
/** 474. Ones and Zeroes https://leetcode.com/problems/ones-and-zeroes/ You are given an array of binary strings strs and two integers m and n. Return the size of the largest subset of strs such that there are at most m 0's and n 1's in the subset. A set x is a subset of a set y if all elements of x are also elements of y. Example 1: Input: strs = ["10","0001","111001","1","0"], m = 5, n = 3 Output: 4 Explanation: The largest subset with at most 5 0's and 3 1's is {"10", "0001", "1", "0"}, so the answer is 4. Other valid but smaller subsets include {"0001", "1"} and {"10", "1", "0"}. {"111001"} is an invalid subset because it contains 4 1's, greater than the maximum of 3. Example 2: Input: strs = ["10","0","1"], m = 1, n = 1 Output: 2 Explanation: The largest subset is {"0", "1"}, so the answer is 2. Constraints: 1. 1 <= strs.length <= 600 2. 1 <= strs[i].length <= 100 3. strs[i] consists only of digits '0' and '1'. 4. 1 <= m, n <= 100 */ pub struct Solution {} impl Solution { /* Solution 1: Brute force Recursive, calculate all possible subsets, Time:O(2^length), Space:O(1), TLE; */ pub fn find_max_form(strs: Vec<String>, m: i32, n: i32) -> i32 { Self::help(0, m, n, &strs) } pub fn help(index: i32, m: i32, n: i32, strs: &Vec<String>) -> i32 { let length: i32 = strs.len() as i32; if index == length { return 0; } let mut currentString: String = String::from(&strs[index as usize]); let mut zeroCount = Self::countZero(¤tString); let mut oneCount = currentString.len() as i32 - zeroCount; //m for 0, n for 1 let mut calculateCurStr = 0; if m >= zeroCount && n >= oneCount { calculateCurStr = 1 + Self::help(index + 1, m - zeroCount, n - oneCount, &strs); } let mut calculateOtherStr = Self::help(index + 1, m, n, &strs); std::cmp::max(calculateCurStr, calculateOtherStr) } fn countZero(str: &String) -> i32 { let mut result = 0; for c in str.chars() { if (c == '0') { result = result + 1; } } result } }