688. Knight Probability in Chessboard
package LeetCode_688 /** * 688. Knight Probability in Chessboard * https://leetcode.com/problems/knight-probability-in-chessboard/ * * On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K moves. * The rows and columns are 0 indexed, so the top-left square is (0, 0), and the bottom-right square is (N-1, N-1). A chess knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction. Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there. The knight continues moving until it has made exactly K moves or has moved off the chessboard. Return the probability that the knight remains on the board after it has stopped moving. Example: Input: 3, 2, 0, 0 Output: 0.0625 Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board. From each of those positions, there are also two moves that will keep the knight on the board. The total probability the knight stays on the board is 0.0625. Note: N will be between 1 and 25. K will be between 0 and 100. The knight always initially starts on the board. * */ class Solution { /* * solution 1: recursion, TLE, * solution 2: DP(Top-Down), recursion+memorization, Time:O(k*n^2), Space:O(n^2) * */ //8 directions val directions = arrayOf( //x,y intArrayOf(1, -2), intArrayOf(2, -1), intArrayOf(2, 1), intArrayOf(1, 2), intArrayOf(-1, 2), intArrayOf(-2, 1), intArrayOf(-2, -1), intArrayOf(-1, -2) ) fun knightProbability(N: Int, K: Int, r: Int, c: Int): Double { val dp = Array(N, { Array(N) { DoubleArray(K + 1) } }) val totalSolution = find(N, K, r, c, dp) //because every step has 8 directions, so k step is 8^k val result = totalSolution / Math.pow(8.0, K.toDouble()) return result } private fun find(N: Int, K: Int, r: Int, c: Int, dp: Array<Array<DoubleArray>>): Double { if (r < 0 || c < 0 || r >= N || c >= N) { return 0.0 } if (K == 0) { //find out one solution return 1.0 } if (dp[r][c][K] != 0.0) { return dp[r][c][K] } var solution = 0.0 for (i in directions.indices) { //sum up every solution solution += find(N, K - 1, r + directions[i][0], c + directions[i][1], dp) } dp[r][c][K] = solution return solution } }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)