347. Top K Frequent Elements, O(N) solution
package LeetCode_347 import kotlin.collections.ArrayList import kotlin.collections.HashMap /** * 347. Top K Frequent Elements * https://leetcode.com/problems/top-k-frequent-elements/description/ * * Given a non-empty array of integers, return the k most frequent elements. * Example 1: Input: nums = [1,1,1,2,2,3], k = 2 Output: [1,2] Example 2: Input: nums = [1], k = 1 Output: [1] Time complexity try on O(n) * */ class Solution { /* * solution 1: maxHeap, Time complexity:O(nlogn), Space complexity:O(n) * solution 2: bucket sort, Time complexity:O(n), Space complexity:O(n) * */ fun topKFrequent(nums: IntArray, k: Int): List<Int> { val result = ArrayList<Int>() //solution 1: //first: num //second: the frequency of num /*val maxHeap = PriorityQueue<Pair<Int, Int>> { a, b -> a.second - b.second } val frequencyMap = HashMap<Int, Int>() for (num in nums) { frequencyMap.put(num, frequencyMap.getOrDefault(num, 0) + 1) } frequencyMap.forEach { key, value -> //key is num //value is frequency val pair = Pair(key, value) maxHeap.add(pair) if (maxHeap.size > k){ maxHeap.remove() } } for (i in 0 until k) { //result.add(maxHeap.remove().first) result.add(0, maxHeap.remove().first) }*/ //solution 2: val frequencyMap = HashMap<Int, Int>() for (num in nums) { frequencyMap.put(num, frequencyMap.getOrDefault(num, 0) + 1) } /* * bucket to save that numbers appear the same frequency, for example: * 1,1,1,2,2,3, bucket[3]=1, bucket[2]=2 * */ val bucket = Array<ArrayList<Int>>(nums.size + 1) { ArrayList() } for (item in frequencyMap) { val frequency = item.value if (bucket[frequency] == null) { bucket[frequency] = ArrayList() } bucket[frequency].add(item.key) } var i = bucket.size - 1 while (i > 0 && result.size < k) { if (bucket[i]!=null){ result.addAll(bucket[i]) } i-- } return result } }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)