1027. Longest Arithmetic Subsequence (Solution 1)
package LeetCode_1027 /** * 1027. Longest Arithmetic Subsequence * https://leetcode.com/problems/longest-arithmetic-subsequence/description/ * * Given an array A of integers, return the length of the longest arithmetic subsequence in A. Recall that a subsequence of A is a list A[i_1], A[i_2], ..., A[i_k] with 0 <= i_1 < i_2 < ... < i_k <= A.length - 1, and that a sequence B is arithmetic if B[i+1] - B[i] are all the same value (for 0 <= i < B.length - 1). Example 1: Input: A = [3,6,9,12] Output: 4 Explanation: The whole array is an arithmetic sequence with steps of length = 3. Example 2: Input: A = [9,4,7,2,10] Output: 3 Explanation: The longest arithmetic subsequence is [4,7,10]. Example 3: Input: A = [20,1,15,3,10,5,8] Output: 4 Explanation: The longest arithmetic subsequence is [20,15,10,5]. Constraints: 1. 2 <= A.length <= 1000 2. 0 <= A[i] <= 500 * */ class Solution { /* * solution 1: bruce force, 3 loop, Time complexity:O(n^3), Space complexity:O(1) * */ fun longestArithSeqLength(A: IntArray): Int { if (A.isEmpty()) { return 0 } var max = 0 val n = A.size for (i in 0 until n) { for (j in i + 1 until n) { val diff = A[j] - A[i] //for example: 1,2,3,4, A[j]=2, diff=1, so next should be 2+1 var next = A[j] + diff var currentMax = 2 for (k in j + 1 until n) { if (A[k] == next) { currentMax++ next = A[k] + diff } max = Math.max(max, currentMax) } } } return max } }