spark sql 执行计划生成案例
前言
一个SQL从词法解析、语法解析、逻辑执行计划、物理执行计划最终转换为可以执行的RDD,中间经历了很多的步骤和流程。其中词法分析和语法分析均有ANTLR4完成,可以进一步学习ANTLR4的相关知识做进一步了解。
本篇文章主要对一个简单的SQL生成的逻辑执行计划物理执行计划的做一个简单地说明。
示例代码
case class Person(name: String, age: Long) private def runBasicDataFrameExample2(spark: SparkSession): Unit = { import spark.implicits._ val df: DataFrame = spark.sparkContext .parallelize( Array( Person("zhangsan", 10), Person("lisi", 20), Person("wangwu", 30))).toDF("name", "age") df.createOrReplaceTempView("people") spark.sql("select * from people where age >= 20").show() }
生成逻辑物理执行计划示例
生成的逻辑和物理执行计划,右侧的是根据QueryExecution的 toString 方法,得到的对应结果
QueryExecution关键源码分析
对关键源码,自己做了简单的分析。如下图:
其中SparkSqlParser使用ASTBuilder生成UnResolved LogicalPlan。
最后
注意Spark SQL 从driver 提交经过词法分析、语法分析、逻辑执行计划、到可落地执行的物理执行计划。其中前三部分都是 spark catalyst 子模块的功能,与最终在哪个SQL执行引擎上执行并无多大关系。物理执行计划是后续转换为RDD的基础和必要条件。
本文对Spark SQL中关键步骤都有一定的涉及,也可以针对QueryExecution做后续的分析,建议修改SparkSQL 源码,做本地调试。后续会进一步分析,主要结合 《SparkSQL 内核剖析》这本书以及自己在工作学习中遇到的各种问题,做进一步源码分析