spark streaming 接收kafka消息之三 -- kafka broker 如何处理 fetch 请求

首先看一下 KafkaServer 这个类的声明:

Represents the lifecycle of a single Kafka broker. Handles all functionality required to start up and shutdown a single Kafka node.
代表了单个 broker 的生命周期,处理所有功能性的请求,以及startup 和shutdown 一个broker node。

 

在这个类的startup中,有一个线程池被实例化了:

/* start processing requests */
// 处理所有的请求
apis = new KafkaApis(socketServer.requestChannel, replicaManager, adminManager, groupCoordinator, transactionCoordinator,
  kafkaController, zkUtils, config.brokerId, config, metadataCache, metrics, authorizer, quotaManagers,
  brokerTopicStats, clusterId, time)
 // 请求处理的线程池
requestHandlerPool = new KafkaRequestHandlerPool(config.brokerId, socketServer.requestChannel, apis, time,
  config.numIoThreads)

 KafkaRequestHandlerPool 的源代码如下:

 1 class KafkaRequestHandlerPool(val brokerId: Int,
 2                               val requestChannel: RequestChannel,
 3                               val apis: KafkaApis,
 4                               time: Time,
 5                               numThreads: Int) extends Logging with KafkaMetricsGroup {
 6 
 7   /* a meter to track the average free capacity of the request handlers */
 8   private val aggregateIdleMeter = newMeter("RequestHandlerAvgIdlePercent", "percent", TimeUnit.NANOSECONDS)
 9 
10   this.logIdent = "[Kafka Request Handler on Broker " + brokerId + "], "
11   val runnables = new Array[KafkaRequestHandler](numThreads)
12   for(i <- 0 until numThreads) { // 实例化所有runnable 对象
13     runnables(i) = new KafkaRequestHandler(i, brokerId, aggregateIdleMeter, numThreads, requestChannel, apis, time)
14 // 初始化并启动daemon thread
15     Utils.daemonThread("kafka-request-handler-" + i, runnables(i)).start()
16   }
17  // 关闭线程池中的所有的线程
18   def shutdown() {
19     info("shutting down")
20     for (handler <- runnables)
21       handler.initiateShutdown()
22     for (handler <- runnables)
23       handler.awaitShutdown()
24     info("shut down completely")
25   }
26 }

再看一下 KafkaRequestHandler 的源码:

 1 class KafkaRequestHandler(id: Int,
 2                           brokerId: Int,
 3                           val aggregateIdleMeter: Meter,
 4                           val totalHandlerThreads: Int,
 5                           val requestChannel: RequestChannel,
 6                           apis: KafkaApis,
 7                           time: Time) extends Runnable with Logging {
 8   this.logIdent = "[Kafka Request Handler " + id + " on Broker " + brokerId + "], "
 9   private val latch = new CountDownLatch(1)
10 
11   def run() {
12     while (true) { // 这个 run 方法会一直运行
13       try {
14         var req : RequestChannel.Request = null
15         while (req == null) { // 如果没有 请求过来,就一直死循环下去
16           // We use a single meter for aggregate idle percentage for the thread pool.
17           // Since meter is calculated as total_recorded_value / time_window and
18           // time_window is independent of the number of threads, each recorded idle
19           // time should be discounted by # threads.
20           val startSelectTime = time.nanoseconds
21           req = requestChannel.receiveRequest(300)
22           val endTime = time.nanoseconds
23           if (req != null)
24             req.requestDequeueTimeNanos = endTime
25           val idleTime = endTime - startSelectTime
26           aggregateIdleMeter.mark(idleTime / totalHandlerThreads)
27         }
28 
29         if (req eq RequestChannel.AllDone) {
30           debug("Kafka request handler %d on broker %d received shut down command".format(id, brokerId))
31           latch.countDown()
32           return
33         }
34         trace("Kafka request handler %d on broker %d handling request %s".format(id, brokerId, req))
35         apis.handle(req) // 处理请求
36       } catch {
37         case e: FatalExitError =>
38           latch.countDown()
39           Exit.exit(e.statusCode)
40         case e: Throwable => error("Exception when handling request", e)
41       }
42     }
43   }
44 
45   def initiateShutdown(): Unit = requestChannel.sendRequest(RequestChannel.AllDone)
46 
47   def awaitShutdown(): Unit = latch.await()
48 
49 }

 重点看一下, kafka.server.KafkaApis#handle 源码:

 1 /**
 2  * Top-level method that handles all requests and multiplexes to the right api
 3  */
 4 def handle(request: RequestChannel.Request) {
 5   try {
 6     trace("Handling request:%s from connection %s;securityProtocol:%s,principal:%s".
 7       format(request.requestDesc(true), request.connectionId, request.securityProtocol, request.session.principal))
 8     ApiKeys.forId(request.requestId) match {
 9       case ApiKeys.PRODUCE => handleProduceRequest(request)
10       case ApiKeys.FETCH => handleFetchRequest(request) // 这是请求fetch消息的请求
11       case ApiKeys.LIST_OFFSETS => handleListOffsetRequest(request)
12       case ApiKeys.METADATA => handleTopicMetadataRequest(request)
13       case ApiKeys.LEADER_AND_ISR => handleLeaderAndIsrRequest(request)
14       case ApiKeys.STOP_REPLICA => handleStopReplicaRequest(request)
15       case ApiKeys.UPDATE_METADATA_KEY => handleUpdateMetadataRequest(request)
16       case ApiKeys.CONTROLLED_SHUTDOWN_KEY => handleControlledShutdownRequest(request)
17       case ApiKeys.OFFSET_COMMIT => handleOffsetCommitRequest(request)
18       case ApiKeys.OFFSET_FETCH => handleOffsetFetchRequest(request)
19       case ApiKeys.FIND_COORDINATOR => handleFindCoordinatorRequest(request)
20       case ApiKeys.JOIN_GROUP => handleJoinGroupRequest(request)
21       case ApiKeys.HEARTBEAT => handleHeartbeatRequest(request)
22       case ApiKeys.LEAVE_GROUP => handleLeaveGroupRequest(request)
23       case ApiKeys.SYNC_GROUP => handleSyncGroupRequest(request)
24       case ApiKeys.DESCRIBE_GROUPS => handleDescribeGroupRequest(request)
25       case ApiKeys.LIST_GROUPS => handleListGroupsRequest(request)
26       case ApiKeys.SASL_HANDSHAKE => handleSaslHandshakeRequest(request)
27       case ApiKeys.API_VERSIONS => handleApiVersionsRequest(request)
28       case ApiKeys.CREATE_TOPICS => handleCreateTopicsRequest(request)
29       case ApiKeys.DELETE_TOPICS => handleDeleteTopicsRequest(request)
30       case ApiKeys.DELETE_RECORDS => handleDeleteRecordsRequest(request)
31       case ApiKeys.INIT_PRODUCER_ID => handleInitProducerIdRequest(request)
32       case ApiKeys.OFFSET_FOR_LEADER_EPOCH => handleOffsetForLeaderEpochRequest(request)
33       case ApiKeys.ADD_PARTITIONS_TO_TXN => handleAddPartitionToTxnRequest(request)
34       case ApiKeys.ADD_OFFSETS_TO_TXN => handleAddOffsetsToTxnRequest(request)
35       case ApiKeys.END_TXN => handleEndTxnRequest(request)
36       case ApiKeys.WRITE_TXN_MARKERS => handleWriteTxnMarkersRequest(request)
37       case ApiKeys.TXN_OFFSET_COMMIT => handleTxnOffsetCommitRequest(request)
38       case ApiKeys.DESCRIBE_ACLS => handleDescribeAcls(request)
39       case ApiKeys.CREATE_ACLS => handleCreateAcls(request)
40       case ApiKeys.DELETE_ACLS => handleDeleteAcls(request)
41       case ApiKeys.ALTER_CONFIGS => handleAlterConfigsRequest(request)
42       case ApiKeys.DESCRIBE_CONFIGS => handleDescribeConfigsRequest(request)
43     }
44   } catch {
45     case e: FatalExitError => throw e
46     case e: Throwable => handleError(request, e)
47   } finally {
48     request.apiLocalCompleteTimeNanos = time.nanoseconds
49   }
50 }

 

再看 handleFetchRequest:

 1 // call the replica manager to fetch messages from the local replica
 2     replicaManager.fetchMessages(
 3       fetchRequest.maxWait.toLong, // 在这里是 0
 4       fetchRequest.replicaId,
 5       fetchRequest.minBytes,
 6       fetchRequest.maxBytes,
 7       versionId <= 2,
 8       authorizedRequestInfo,
 9       replicationQuota(fetchRequest),
10       processResponseCallback,
11       fetchRequest.isolationLevel)

fetchMessage 源码如下:

 1 /**
 2  * Fetch messages from the leader replica, and wait until enough data can be fetched and return;
 3  * the callback function will be triggered either when timeout or required fetch info is satisfied
 4  */
 5 def fetchMessages(timeout: Long,
 6                   replicaId: Int,
 7                   fetchMinBytes: Int,
 8                   fetchMaxBytes: Int,
 9                   hardMaxBytesLimit: Boolean,
10                   fetchInfos: Seq[(TopicPartition, PartitionData)],
11                   quota: ReplicaQuota = UnboundedQuota,
12                   responseCallback: Seq[(TopicPartition, FetchPartitionData)] => Unit,
13                   isolationLevel: IsolationLevel) {
14   val isFromFollower = replicaId >= 0
15   val fetchOnlyFromLeader: Boolean = replicaId != Request.DebuggingConsumerId
16   val fetchOnlyCommitted: Boolean = ! Request.isValidBrokerId(replicaId)
17  // 从本地 logs 中读取数据
18   // read from local logs
19   val logReadResults = readFromLocalLog(
20     replicaId = replicaId,
21     fetchOnlyFromLeader = fetchOnlyFromLeader,
22     readOnlyCommitted = fetchOnlyCommitted,
23     fetchMaxBytes = fetchMaxBytes,
24     hardMaxBytesLimit = hardMaxBytesLimit,
25     readPartitionInfo = fetchInfos,
26     quota = quota,
27     isolationLevel = isolationLevel)
28 
29   // if the fetch comes from the follower,
30   // update its corresponding log end offset
31   if(Request.isValidBrokerId(replicaId))
32     updateFollowerLogReadResults(replicaId, logReadResults)
33 
34   // check if this fetch request can be satisfied right away
35   val logReadResultValues = logReadResults.map { case (_, v) => v }
36   val bytesReadable = logReadResultValues.map(_.info.records.sizeInBytes).sum
37   val errorReadingData = logReadResultValues.foldLeft(false) ((errorIncurred, readResult) =>
38     errorIncurred || (readResult.error != Errors.NONE))
39  // 立即返回的四个条件:
40 // 1. Fetch 请求不希望等待
41 // 2. Fetch 请求不请求任何数据
42 // 3. 有足够数据可以返回
43 // 4. 当读取数据的时候有error 发生
44   // respond immediately if 1) fetch request does not want to wait
45   //                        2) fetch request does not require any data
46   //                        3) has enough data to respond
47   //                        4) some error happens while reading data
48   if (timeout <= 0 || fetchInfos.isEmpty || bytesReadable >= fetchMinBytes || errorReadingData) {
49     val fetchPartitionData = logReadResults.map { case (tp, result) =>
50       tp -> FetchPartitionData(result.error, result.highWatermark, result.leaderLogStartOffset, result.info.records,
51         result.lastStableOffset, result.info.abortedTransactions)
52     }
53     responseCallback(fetchPartitionData)
54   } else {// DelayedFetch
55     // construct the fetch results from the read results
56     val fetchPartitionStatus = logReadResults.map { case (topicPartition, result) =>
57       val fetchInfo = fetchInfos.collectFirst {
58         case (tp, v) if tp == topicPartition => v
59       }.getOrElse(sys.error(s"Partition $topicPartition not found in fetchInfos"))
60       (topicPartition, FetchPartitionStatus(result.info.fetchOffsetMetadata, fetchInfo))
61     }
62     val fetchMetadata = FetchMetadata(fetchMinBytes, fetchMaxBytes, hardMaxBytesLimit, fetchOnlyFromLeader,
63       fetchOnlyCommitted, isFromFollower, replicaId, fetchPartitionStatus)
64     val delayedFetch = new DelayedFetch(timeout, fetchMetadata, this, quota, isolationLevel, responseCallback)
65 
66     // create a list of (topic, partition) pairs to use as keys for this delayed fetch operation
67     val delayedFetchKeys = fetchPartitionStatus.map { case (tp, _) => new TopicPartitionOperationKey(tp) }
68 
69     // try to complete the request immediately, otherwise put it into the purgatory;
70     // this is because while the delayed fetch operation is being created, new requests
71     // may arrive and hence make this operation completable.
72     delayedFetchPurgatory.tryCompleteElseWatch(delayedFetch, delayedFetchKeys)
73   }
74 }

继续追踪 readFromLocalLog 源码:

  1 /**
  2  * Read from multiple topic partitions at the given offset up to maxSize bytes
  3  */
  4 // 他负责从多个 topic partition中读数据到最大值,默认1M
  5 隔离级别: 读已提交、读未提交
  6 def readFromLocalLog(replicaId: Int,
  7                      fetchOnlyFromLeader: Boolean,
  8                      readOnlyCommitted: Boolean,
  9                      fetchMaxBytes: Int,
 10                      hardMaxBytesLimit: Boolean,
 11                      readPartitionInfo: Seq[(TopicPartition, PartitionData)],
 12                      quota: ReplicaQuota,
 13                      isolationLevel: IsolationLevel): Seq[(TopicPartition, LogReadResult)] = {
 14 
 15   def read(tp: TopicPartition, fetchInfo: PartitionData, limitBytes: Int, minOneMessage: Boolean): LogReadResult = {
 16     val offset = fetchInfo.fetchOffset
 17     val partitionFetchSize = fetchInfo.maxBytes
 18     val followerLogStartOffset = fetchInfo.logStartOffset
 19 
 20     brokerTopicStats.topicStats(tp.topic).totalFetchRequestRate.mark()
 21     brokerTopicStats.allTopicsStats.totalFetchRequestRate.mark()
 22 
 23     try {
 24       trace(s"Fetching log segment for partition $tp, offset $offset, partition fetch size $partitionFetchSize, " +
 25         s"remaining response limit $limitBytes" +
 26         (if (minOneMessage) s", ignoring response/partition size limits" else ""))
 27 
 28       // decide whether to only fetch from leader
 29       val localReplica = if (fetchOnlyFromLeader)
 30         getLeaderReplicaIfLocal(tp)
 31       else
 32         getReplicaOrException(tp)
 33 
 34       val initialHighWatermark = localReplica.highWatermark.messageOffset
 35       val lastStableOffset = if (isolationLevel == IsolationLevel.READ_COMMITTED)
 36         Some(localReplica.lastStableOffset.messageOffset)
 37       else
 38         None
 39 
 40       // decide whether to only fetch committed data (i.e. messages below high watermark)
 41       val maxOffsetOpt = if (readOnlyCommitted)
 42         Some(lastStableOffset.getOrElse(initialHighWatermark))
 43       else
 44         None
 45 
 46       /* Read the LogOffsetMetadata prior to performing the read from the log.
 47        * We use the LogOffsetMetadata to determine if a particular replica is in-sync or not.
 48        * Using the log end offset after performing the read can lead to a race condition
 49        * where data gets appended to the log immediately after the replica has consumed from it
 50        * This can cause a replica to always be out of sync.
 51        */
 52       val initialLogEndOffset = localReplica.logEndOffset.messageOffset
 53       val initialLogStartOffset = localReplica.logStartOffset
 54       val fetchTimeMs = time.milliseconds
 55       val logReadInfo = localReplica.log match {
 56         case Some(log) =>
 57           val adjustedFetchSize = math.min(partitionFetchSize, limitBytes)
 58 
 59           // Try the read first, this tells us whether we need all of adjustedFetchSize for this partition
 60 // 尝试从 Log 中读取数据
 61           val fetch = log.read(offset, adjustedFetchSize, maxOffsetOpt, minOneMessage, isolationLevel)
 62 
 63           // If the partition is being throttled, simply return an empty set.
 64           if (shouldLeaderThrottle(quota, tp, replicaId))
 65             FetchDataInfo(fetch.fetchOffsetMetadata, MemoryRecords.EMPTY)
 66           // For FetchRequest version 3, we replace incomplete message sets with an empty one as consumers can make
 67           // progress in such cases and don't need to report a `RecordTooLargeException`
 68           else if (!hardMaxBytesLimit && fetch.firstEntryIncomplete)
 69             FetchDataInfo(fetch.fetchOffsetMetadata, MemoryRecords.EMPTY)
 70           else fetch
 71 
 72         case None =>
 73           error(s"Leader for partition $tp does not have a local log")
 74           FetchDataInfo(LogOffsetMetadata.UnknownOffsetMetadata, MemoryRecords.EMPTY)
 75       }
 76 
 77       LogReadResult(info = logReadInfo,
 78                     highWatermark = initialHighWatermark,
 79                     leaderLogStartOffset = initialLogStartOffset,
 80                     leaderLogEndOffset = initialLogEndOffset,
 81                     followerLogStartOffset = followerLogStartOffset,
 82                     fetchTimeMs = fetchTimeMs,
 83                     readSize = partitionFetchSize,
 84                     lastStableOffset = lastStableOffset,
 85                     exception = None)
 86     } catch {
 87       // NOTE: Failed fetch requests metric is not incremented for known exceptions since it
 88       // is supposed to indicate un-expected failure of a broker in handling a fetch request
 89       case e@ (_: UnknownTopicOrPartitionException |
 90                _: NotLeaderForPartitionException |
 91                _: ReplicaNotAvailableException |
 92                _: OffsetOutOfRangeException) =>
 93         LogReadResult(info = FetchDataInfo(LogOffsetMetadata.UnknownOffsetMetadata, MemoryRecords.EMPTY),
 94                       highWatermark = -1L,
 95                       leaderLogStartOffset = -1L,
 96                       leaderLogEndOffset = -1L,
 97                       followerLogStartOffset = -1L,
 98                       fetchTimeMs = -1L,
 99                       readSize = partitionFetchSize,
100                       lastStableOffset = None,
101                       exception = Some(e))
102       case e: Throwable =>
103         brokerTopicStats.topicStats(tp.topic).failedFetchRequestRate.mark()
104         brokerTopicStats.allTopicsStats.failedFetchRequestRate.mark()
105         error(s"Error processing fetch operation on partition $tp, offset $offset", e)
106         LogReadResult(info = FetchDataInfo(LogOffsetMetadata.UnknownOffsetMetadata, MemoryRecords.EMPTY),
107                       highWatermark = -1L,
108                       leaderLogStartOffset = -1L,
109                       leaderLogEndOffset = -1L,
110                       followerLogStartOffset = -1L,
111                       fetchTimeMs = -1L,
112                       readSize = partitionFetchSize,
113                       lastStableOffset = None,
114                       exception = Some(e))
115     }
116   }
117  // maxSize, 默认1M
118   var limitBytes = fetchMaxBytes
119   val result = new mutable.ArrayBuffer[(TopicPartition, LogReadResult)]
120   var minOneMessage = !hardMaxBytesLimit // hardMaxBytesLimit 
121   readPartitionInfo.foreach { case (tp, fetchInfo) =>
122     val readResult = read(tp, fetchInfo, limitBytes, minOneMessage)
123     val messageSetSize = readResult.info.records.sizeInBytes
124     // Once we read from a non-empty partition, we stop ignoring request and partition level size limits
125     if (messageSetSize > 0)
126       minOneMessage = false
127     limitBytes = math.max(0, limitBytes - messageSetSize)
128     result += (tp -> readResult)
129   }
130   result
131 }

Log.read 源码如下:

 1 /**
 2  * Read messages from the log.
 3  *
 4  * @param startOffset The offset to begin reading at
 5  * @param maxLength The maximum number of bytes to read
 6  * @param maxOffset The offset to read up to, exclusive. (i.e. this offset NOT included in the resulting message set)
 7  * @param minOneMessage If this is true, the first message will be returned even if it exceeds `maxLength` (if one exists)
 8  * @param isolationLevel The isolation level of the fetcher. The READ_UNCOMMITTED isolation level has the traditional
 9  *                       read semantics (e.g. consumers are limited to fetching up to the high watermark). In
10  *                       READ_COMMITTED, consumers are limited to fetching up to the last stable offset. Additionally,
11  *                       in READ_COMMITTED, the transaction index is consulted after fetching to collect the list
12  *                       of aborted transactions in the fetch range which the consumer uses to filter the fetched
13  *                       records before they are returned to the user. Note that fetches from followers always use
14  *                       READ_UNCOMMITTED.
15  *
16  * @throws OffsetOutOfRangeException If startOffset is beyond the log end offset or before the log start offset
17  * @return The fetch data information including fetch starting offset metadata and messages read.
18  */
19 def read(startOffset: Long, maxLength: Int, maxOffset: Option[Long] = None, minOneMessage: Boolean = false,
20          isolationLevel: IsolationLevel): FetchDataInfo = {
21   trace("Reading %d bytes from offset %d in log %s of length %d bytes".format(maxLength, startOffset, name, size))
22 
23   // Because we don't use lock for reading, the synchronization is a little bit tricky.
24   // We create the local variables to avoid race conditions with updates to the log.
25   val currentNextOffsetMetadata = nextOffsetMetadata
26   val next = currentNextOffsetMetadata.messageOffset
27   if (startOffset == next) {
28     val abortedTransactions =
29       if (isolationLevel == IsolationLevel.READ_COMMITTED) Some(List.empty[AbortedTransaction])
30       else None
31     return FetchDataInfo(currentNextOffsetMetadata, MemoryRecords.EMPTY, firstEntryIncomplete = false,
32       abortedTransactions = abortedTransactions)
33   }
34 
35   var segmentEntry = segments.floorEntry(startOffset)
36 
37   // return error on attempt to read beyond the log end offset or read below log start offset
38   if (startOffset > next || segmentEntry == null || startOffset < logStartOffset)
39     throw new OffsetOutOfRangeException("Request for offset %d but we only have log segments in the range %d to %d.".format(startOffset, logStartOffset, next))
40 
41   // Do the read on the segment with a base offset less than the target offset
42   // but if that segment doesn't contain any messages with an offset greater than that
43   // continue to read from successive segments until we get some messages or we reach the end of the log
44   while(segmentEntry != null) {
45     val segment = segmentEntry.getValue
46 
47     // If the fetch occurs on the active segment, there might be a race condition where two fetch requests occur after
48     // the message is appended but before the nextOffsetMetadata is updated. In that case the second fetch may
49     // cause OffsetOutOfRangeException. To solve that, we cap the reading up to exposed position instead of the log
50     // end of the active segment.
51     val maxPosition = {
52       if (segmentEntry == segments.lastEntry) {
53         val exposedPos = nextOffsetMetadata.relativePositionInSegment.toLong
54         // Check the segment again in case a new segment has just rolled out.
55         if (segmentEntry != segments.lastEntry)
56           // New log segment has rolled out, we can read up to the file end.
57           segment.size
58         else
59           exposedPos
60       } else {
61         segment.size
62       }
63     }
64 // 从segment 中去读取数据
65     val fetchInfo = segment.read(startOffset, maxOffset, maxLength, maxPosition, minOneMessage)
66     if (fetchInfo == null) {
67       segmentEntry = segments.higherEntry(segmentEntry.getKey)
68     } else {
69       return isolationLevel match {
70         case IsolationLevel.READ_UNCOMMITTED => fetchInfo
71         case IsolationLevel.READ_COMMITTED => addAbortedTransactions(startOffset, segmentEntry, fetchInfo)
72       }
73     }
74   }
75 
76   // okay we are beyond the end of the last segment with no data fetched although the start offset is in range,
77   // this can happen when all messages with offset larger than start offsets have been deleted.
78   // In this case, we will return the empty set with log end offset metadata
79   FetchDataInfo(nextOffsetMetadata, MemoryRecords.EMPTY)
80 }

 

LogSegment 的 read 方法:

 1 /**
 2  * Read a message set from this segment beginning with the first offset >= startOffset. The message set will include
 3  * no more than maxSize bytes and will end before maxOffset if a maxOffset is specified.
 4  *
 5  * @param startOffset A lower bound on the first offset to include in the message set we read
 6  * @param maxSize The maximum number of bytes to include in the message set we read
 7  * @param maxOffset An optional maximum offset for the message set we read
 8  * @param maxPosition The maximum position in the log segment that should be exposed for read
 9  * @param minOneMessage If this is true, the first message will be returned even if it exceeds `maxSize` (if one exists)
10  *
11  * @return The fetched data and the offset metadata of the first message whose offset is >= startOffset,
12  *         or null if the startOffset is larger than the largest offset in this log
13  */
14 @threadsafe
15 def read(startOffset: Long, maxOffset: Option[Long], maxSize: Int, maxPosition: Long = size,
16          minOneMessage: Boolean = false): FetchDataInfo = {
17   if (maxSize < 0)
18     throw new IllegalArgumentException("Invalid max size for log read (%d)".format(maxSize))
19 
20   val logSize = log.sizeInBytes // this may change, need to save a consistent copy
21   val startOffsetAndSize = translateOffset(startOffset)
22  // offset 已经到本 segment 的结尾,返回 null
23   // if the start position is already off the end of the log, return null
24   if (startOffsetAndSize == null)
25     return null
26  // 开始位置
27   val startPosition = startOffsetAndSize.position
28   val offsetMetadata = new LogOffsetMetadata(startOffset, this.baseOffset, startPosition)
29  // 调整的最大位置
30   val adjustedMaxSize =
31     if (minOneMessage) math.max(maxSize, startOffsetAndSize.size)
32     else maxSize
33 
34   // return a log segment but with zero size in the case below
35   if (adjustedMaxSize == 0)
36     return FetchDataInfo(offsetMetadata, MemoryRecords.EMPTY)
37 
38   // calculate the length of the message set to read based on whether or not they gave us a maxOffset
39   val fetchSize: Int = maxOffset match {
40     case None =>
41       // no max offset, just read until the max position
42       min((maxPosition - startPosition).toInt, adjustedMaxSize)
43     case Some(offset) =>
44       // there is a max offset, translate it to a file position and use that to calculate the max read size;
45       // when the leader of a partition changes, it's possible for the new leader's high watermark to be less than the
46       // true high watermark in the previous leader for a short window. In this window, if a consumer fetches on an
47       // offset between new leader's high watermark and the log end offset, we want to return an empty response.
48       if (offset < startOffset)
49         return FetchDataInfo(offsetMetadata, MemoryRecords.EMPTY, firstEntryIncomplete = false)
50       val mapping = translateOffset(offset, startPosition)
51       val endPosition =
52         if (mapping == null)
53           logSize // the max offset is off the end of the log, use the end of the file
54         else
55           mapping.position
56       min(min(maxPosition, endPosition) - startPosition, adjustedMaxSize).toInt
57   }
58 
59   FetchDataInfo(offsetMetadata, log.read(startPosition, fetchSize),
60     firstEntryIncomplete = adjustedMaxSize < startOffsetAndSize.size)
61 }
62 
63 log.read(startPosition, fetchSize)  的源码如下:
64 /**
65  * Return a slice of records from this instance, which is a view into this set starting from the given position
66  * and with the given size limit.
67  *
68  * If the size is beyond the end of the file, the end will be based on the size of the file at the time of the read.
69  *
70  * If this message set is already sliced, the position will be taken relative to that slicing.
71  *
72  * @param position The start position to begin the read from
73  * @param size The number of bytes after the start position to include
74  * @return A sliced wrapper on this message set limited based on the given position and size
75  */
76 public FileRecords read(int position, int size) throws IOException {
77     if (position < 0)
78         throw new IllegalArgumentException("Invalid position: " + position);
79     if (size < 0)
80         throw new IllegalArgumentException("Invalid size: " + size);
81 
82     final int end;
83     // handle integer overflow
84     if (this.start + position + size < 0)
85         end = sizeInBytes();
86     else
87         end = Math.min(this.start + position + size, sizeInBytes());
88     return new FileRecords(file, channel, this.start + position, end, true);
89 }

 

processResponseCallback(在kafka.server.KafkaApis#handleFetchRequest 中定义)源码如下:

 1 // fetch response callback invoked after any throttling
 2   def fetchResponseCallback(bandwidthThrottleTimeMs: Int) {
 3     def createResponse(requestThrottleTimeMs: Int): RequestChannel.Response = {
 4       val convertedData = new util.LinkedHashMap[TopicPartition, FetchResponse.PartitionData]
 5       fetchedPartitionData.asScala.foreach { case (tp, partitionData) =>
 6         convertedData.put(tp, convertedPartitionData(tp, partitionData))
 7       }
 8       val response = new FetchResponse(convertedData, 0)
 9       val responseStruct = response.toStruct(versionId)
10 
11       trace(s"Sending fetch response to client $clientId of ${responseStruct.sizeOf} bytes.")
12       response.responseData.asScala.foreach { case (topicPartition, data) =>
13         // record the bytes out metrics only when the response is being sent
14         brokerTopicStats.updateBytesOut(topicPartition.topic, fetchRequest.isFromFollower, data.records.sizeInBytes)
15       }
16 
17       val responseSend = response.toSend(responseStruct, bandwidthThrottleTimeMs + requestThrottleTimeMs,
18         request.connectionId, request.header)
19       RequestChannel.Response(request, responseSend)
20     }
21 
22     if (fetchRequest.isFromFollower)
23       sendResponseExemptThrottle(createResponse(0))
24     else
25       sendResponseMaybeThrottle(request, request.header.clientId, requestThrottleMs =>
26         requestChannel.sendResponse(createResponse(requestThrottleMs)))
27   }
28 
29   // When this callback is triggered, the remote API call has completed.
30   // Record time before any byte-rate throttling.
31   request.apiRemoteCompleteTimeNanos = time.nanoseconds
32 
33   if (fetchRequest.isFromFollower) {
34     // We've already evaluated against the quota and are good to go. Just need to record it now.
35     val responseSize = sizeOfThrottledPartitions(versionId, fetchRequest, mergedPartitionData, quotas.leader)
36     quotas.leader.record(responseSize)
37     fetchResponseCallback(bandwidthThrottleTimeMs = 0)
38   } else {
39     // Fetch size used to determine throttle time is calculated before any down conversions.
40     // This may be slightly different from the actual response size. But since down conversions
41     // result in data being loaded into memory, it is better to do this after throttling to avoid OOM.
42     val response = new FetchResponse(fetchedPartitionData, 0)
43     val responseStruct = response.toStruct(versionId)
44     quotas.fetch.recordAndMaybeThrottle(request.session.sanitizedUser, clientId, responseStruct.sizeOf,
45       fetchResponseCallback)
46   }
47 }

 

结论,会具体定位到具体LogSegment, 通过 start 和 size 来获取 logSegement中的记录,最大大小默认为1 M,可以设置。

并且提供了数据隔离机制,可以支持读已提交和读未提交(默认是读未提交)。如果没有数据会直接返回的。

posted @ 2019-06-25 23:50  JohnnyBai  阅读(1574)  评论(0编辑  收藏  举报