Choose and divide
The binomial coefficient C(m, n) is defined as C(m, n) = m! (m − n)! n! Given four natural numbers p, q, r, and s, compute the the result of dividing C(p, q) by C(r, s). Input Input consists of a sequence of lines. Each line contains four non-negative integer numbers giving values for p, q, r, and s, respectively, separated by a single space. All the numbers will be smaller than 10,000 with p ≥ q and r ≥ s. Output For each line of input, print a single line containing a real number with 5 digits of precision in the fraction, giving the number as described above. You may assume the result is not greater than 100,000,000.
Sample Input
10 5 14 9 93 45 84 59 145 95 143 92 995 487 996 488 2000 1000 1999 999 9998 4999 9996 4998
Sample Outpu
t 0.12587 505606.46055 1.28223 0.48996 2.00000 3.99960
唯一分解定理应用
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<sstream> #include<algorithm> #include<queue> #include<deque> #include<iomanip> #include<vector> #include<cmath> #include<map> #include<stack> #include<set> #include<memory> #include<list> #include<string> using namespace std; typedef long long LL; typedef unsigned long long ULL; #define MAXN 10009 #define L 31 #define INF 1000000009 #define eps 0.00000001 /* 唯一分解定理 应用 */ int prime[MAXN], e[MAXN]; void getprime() { memset(prime, false, sizeof(prime)); for (int i = 2; i <= MAXN; i++) { if (!prime[i]) prime[++prime[0]] = i; for (int j = 1; j <= prime[0] && prime[j] <= MAXN / i; j++) { prime[prime[j] * i] = 1; if (i%prime[j] == 0) break; } } } void add_interger(int n, int d) { for (int i = 1; i <= prime[0]; i++) { while (n%prime[i] == 0) { n /= prime[i]; e[i] += d; } if (n == 1) break; } } void add_factorial(int n, int d) { for (int i = 1; i <= n; i++) add_interger(i, d); } int main() { getprime(); int p, q, r, s; while (cin >> p >> q >> r >> s) { memset(e, 0, sizeof(e)); add_factorial(p, 1); add_factorial(q, -1); add_factorial(p - q, -1); add_factorial(r, -1); add_factorial(s, 1); add_factorial(r - s, 1); double ans = 1; for (int i = 1; i <= prime[0]; i++) ans *= pow(prime[i], e[i]); printf("%.5lf\n", ans); } return 0; }