Redis的认识

1,什么是redis:

  Redis是一个开源的,内存中的数据结构存储系统,它可以用作数据库,缓存和消息的中间件,支持多种数据结构,例如:字符串String、散列hashes、列表list、集合set、有序集合zset

1.1,redis发展史:

  2008年,意大利的一家创业公司Merzia推出了一款基于MySQL的网站实时统计系统LLOOGG,然而没过多久该公司的创始人 Salvatore Sanfilippo便 对MySQL的性能感到失望,于是他决定亲自为LLOOGG量身定做一个数据库,并于2009年开发完成,这个数据库就是Redis。 不过Salvatore Sanfilippo并不满足只将Redis用于LLOOGG这一款产品,而是希望更多的人使用它,于是在同一年Salvatore Sanfilippo将Redis开源发布,并开始和Redis的另一名主要的代码贡献者Pieter Noordhuis一起继续着Redis的开发,直到今天。
Salvatore Sanfilippo自己也没有想到,短短的几年时间,Redis就拥有了庞大的用户群体。Hacker News在2012年发布了一份数据库的使用情况调查,结果显示有近12%的公司在使用Redis。国内如新浪微博、街旁网、知乎网,国外如GitHub、Stack Overflow、Flickr等都是Redis的用户。
VMware公司从2010年开始赞助Redis的开发, Salvatore Sanfilippo和Pieter Noordhuis也分别在3月和5月加入VMware,全职开发Redis。

1.2,redis应用场景:

  1. 缓存(数据查询、短连接、新闻内容、商品内容等等最多使用)
  2. 分布式集群架构中的session分离。
  3. 聊天室的在线好友列表。
  4. 任务队列。(秒杀、抢购、12306等等)
  5. 应用排行榜。
  6. 网站访问统计。
  7. 数据过期处理(可以精确到毫秒)

1.3,Redis的优势:

  1. 性能极高 – Redis能读的速度是110000次/s,写的速度是81000次/s 。
  2. 丰富的数据类型 – Redis支持二进制案例的 Strings, Lists, Hashes, Sets 及 Ordered Sets 数据类型操作。
  3. 原子 – Redis的所有操作都是原子性的,同时Redis还支持对几个操作全并后的原子性执行。
  4. 丰富的特性 – Redis还支持 publish/subscribe 通知, key 过期等等特性
  5. 支持事务

1.4,redis集群原理:

  redis集群搭建的方式有多种,例如使用zookeeper等,但从redis3.0之后版本支持redis-cluster集群,redis-cluster采用无中心结构,每个节点保存数据和整个集群状态,每个节点都和其他所有节点连接。其redis-cluster架构图如下:

在这个图中,每一个蓝色的圈都代表着一个redis的服务器节点。它们任何两个节点之间都是相互连通的。客户端可以与任何一个节点相连接,然后就可以访问集群中的任何一个节点。对其进行存取和其他操作。
架构细节:
  (1)所有的redis节点彼此互联(PING-PONG机制),内部使用二进制协议优化传输速度和带宽.
  (2)节点的fail是通过集群中超过半数的节点检测失效时才生效.
  (3)客户端与redis节点直连,不需要中间proxy层.客户端不需要连接集群所有节点,连接集群中任何一个可用节点即可
  (4)redis-cluster把所有的物理节点映射到[0-16383]slot上,cluster 负责维护
  (5)Redis 集群中内置了 16384 个哈希槽,当需要在 Redis 集群中放置一个 key-value 时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点


Key:a
  计算a的hash值,例如值为100,100这个槽在server1上,所以a应该放到server1.
Key:hello
  计算hello的Hash值:10032,此槽在server2上。Hell可以应该存在server2.

1.5,redis-cluster投票容错:

  • redis-cluster主从节点不要在同一个机器部署:
    • 以我们的经验看redis实例本身基本不会挂掉,通常是机器出了问题(断电、机器故障)、甚至是机架、机柜出了问题,造成Redis挂掉。
    • 如果Redis-Cluster的主从都在一个机器上,那么如果这台机器挂了,主从全部挂掉,高可用就无法实现。
    • 通常来讲一对主从所在机器:不跨机房、要跨机架、可以在一个机柜。
  • redis-cluster误判节点fail进行切换:
    • redis-cluster是无中心的架构,判断节点失败是通过仲裁的方式来进行(gossip和raft),也就是大部分节点认为一个节点挂掉了,就会做fail判定。
    • 如果某个节点在执行比较重的操作(flushall, slaveof等等)(可能短时间redis客户端连接会阻塞(redis单线程))或者由于网络原因,造成其他节点认为它挂掉了,会做fail判定。
    • redis-cluster提供了cluster-node-timeout这个参数(默认15秒),作为fail依据(如果超过15秒还是没反应,就认为是挂掉了)

1.6,redis内存优化:

  Redis Hash是value内部为一个HashMap,如果该Map的成员数比较少,则会采用类似一维线性的紧凑格式来存储该Map, 即省去了大量指针的内存开销,这个参数控制对应在redis.conf配置文件中下面2项:
  hash-max-zipmap-entries 64 hash-max-zipmap-value 512
  当value这个Map内部不超过多少个成员时会采用线性紧凑格式存储,默认是64,即value内部有64个以下的成员就是使用线性紧凑存储,超过该值自动转成真正的HashMap。
  hash-max-zipmap-value 含义是当 value这个Map内部的每个成员值长度不超过多少字节就会采用线性紧凑存储来节省空间。
  以上2个条件任意一个条件超过设置值都会转换成真正的HashMap,也就不会再节省内存了,那么这个值是不是设置的越大越好呢,答案当然是否定的,HashMap的优势就是查找和操作的时间复杂度都是O(1)的,而放弃Hash采用一维存储则是O(n)的时间复杂度,如果
  成员数量很少,则影响不大,否则会严重影响性能,所以要权衡好这个值的设置,总体上还是最根本的时间成本和空间成本上的权衡。
  list-max-ziplist-value 64 list-max-ziplist-entries 512
  list数据类型节点值大小小于多少字节会采用紧凑存储格式、list数据类型多少节点以下会采用去指针的紧凑存储格式。

1.7,内存预分配:

  Redis内部实现没有对内存分配方面做过多的优化(对比Memcache),在一定程度上会存在内存碎片,不过大多数情况下这个不会成为Redis的性能瓶颈,不过如果在Redis内部存储的大部分数据是数值型的话,Redis内部采用了一个shared integer的 方式来省去分配内存的开销,即在系统启动时先分配一个从1~n 那么多个数值对象放在一个池子中,如果存储的数据恰好是这个数值范围内的数据,则直接从池子里取出该对象,并且通过引用计数的方式来共享,这样在系统存储 了大量数值下,也能一定程度上节省内存并且提高性能,这个参数值n的设置需要修改源代码中的一行宏定义REDIS_SHARED_INTEGERS,该值 默认是10000,可以根据自己的需要进行修改,修改后重新编译就可以了。

1.8,持久化机制:

定时快照方式(snapshot):
  该持久化方式实际是在Redis内部一个定时器事件,每隔固定时间去检查当前数据发生的改变次数与时间是否满足配置的持久化触发的条件,如果满足则通 过操作系统fork调用来创建出一个子进程,这个子进程默认会与父进程共享相同的地址空间,这时就可以通过子进程来遍历整个内存来进行存储操作,而主进程 则仍然可以提供服务,当有写入时由操作系统按照内存页(page)为单位来进行copy-on-write保证父子进程之间不会互相影响,该持久化的主要缺点是定时快照只是代表一段时间内的内存映像,所以系统重启会丢失上次快照与重启之间所有的数据。
基于语句追加方式(aof):
  aof方式实际类似mysql的基于语句的binlog方式,即每条会使Redis内存数据发生改变的命令都会追加到一个log文件中,也就是说这个log文件就是Redis的持久化数据,aof的方式的主要缺点是追加log文件可能导致体积过大,当系统重启恢复数据时如果是aof的方式则加载数据会非常慢,几十G的数据可能需要几小时才能加载完,当然这个耗时并不是因为磁盘文件读取速度慢,而是由于读取的所有命令都要在内存中执行一遍。另外由于每条命令都要写log,所以使用aof的方式,Redis的读写性能也会有所下降,可以考虑将数据保存到不同的Redis实例中,每个实例的内存大小在2G左右,避免将鸡蛋放到一个篮子里,既可以减少缓存失效给系统带来的影响,又可以加快数据恢复的速度,不过同时也给系统设计带来了一定的复杂性。

1.8,redis持久化崩溃问题:

  有Redis线上运维经验的人会发现Redis在物理内存使用比较多,但还没有超过实际物理内存总容量时就会发生不稳定甚至崩溃的 问题,有人认为是基于快照方式持久化的fork系统调用造成内存占用加倍而导致的,这种观点是不准确的,因为fork 调用的copy-on-write机制是基于操作系统页这个单位的,也就是只有有写入的脏页会被复制,但是一般你的系统不会在短时间内所有的页都发生了写 入而导致复制,那么是什么原因导致Redis崩溃的呢?
  答案:redis的持久化使用了Buffer IO造 成的,所谓Buffer IO是指Redis对持久化文件的写入和读取操作都会使用物理内存的Page Cache,而大多数数据库系统会使用Direct IO来绕过这层Page Cache并自行维护一个数据的Cache,而当Redis的持久化文件过大(尤其是快照文件),并对其进行读写时,磁盘文件中的数据都会被加载到物理内 存中作为操作系统对该文件的一层Cache,而这层Cache的数据与Redis内存中管理的数据实际是重复存储的,虽然内核在物理内存紧张时会做 Page Cache的剔除工作,但内核很可能认为某块Page Cache更重要,而让你的进程开始Swap ,这时你的系统就会开始出现不稳定或者崩溃了。我们的经验是当你的Redis物理内存使用超过内存总容量的3/5时就会开始比较危险了。

2,总结:

总结:

  1. 根据业务需要选择合适的数据类型,并为不同的应用场景设置相应的紧凑存储参数。
  2. 当业务场景不需要数据持久化时,关闭所有的持久化方式可以获得最佳的性能以及最大的内存使用量。
  3. 如果需要使用持久化,根据是否可以容忍重启丢失部分数据在快照方式与语句追加方式之间选择其一,不要使用虚拟内存以及diskstore方式。
  4. 不要让你的Redis所在机器物理内存使用超过实际内存总量的3/5。
    redis.conf中的maxmemory选项,该选项是告诉Redis当使用了多少物理内存后就开始拒绝后续的写入请求,该参数能很好的保护好你的Redis不会因为使用了过多的物理内存而导致swap,最终严重影响性能甚至崩溃,redis.conf文件中 vm-enabled 为 no。 
posted @ 2018-10-10 13:33  姜煜  阅读(816)  评论(0编辑  收藏  举报