Spark—RDD编程常用转换算子代码实例

Spark—RDD编程常用转换算子代码实例

Spark rdd 常用 Transformation 实例:

1、def map[U: ClassTag](f: T => U): RDD[U]   将函数应用于RDD的每一元素,并返回一个新的RDD

package top.ruandb
import org.apache.spark.{SparkConf, SparkContext}
object RddTest extends App{
  val sparkConf = new  SparkConf().setAppName("RddTest").setMaster("local[2]")
  val sc = new SparkContext(sparkConf)
  //map
  var source = sc.parallelize(1 to 10)
  source.collect().foreach(e=>print(e+","))//1 2 3 4 5 6 7 8 9 10
  var sourceMap = source.map(_*10)
  sourceMap.collect().foreach(e=>print(e+","))//10 20 30 40 50 60 70 80 90 100
}

2、def filter(f: T => Boolean): RDD[T] 通过提供的产生boolean条件的表达式来返回符合结果为True新的RDD

//filter
  var source = sc.parallelize(1 to 10)
  source.collect().foreach(e=>print(e+" "))//1 2 3 4 5 6 7 8 9 10
  var sourceMap = source.filter(_.<(5))
  sourceMap.collect().foreach(e=>print(e+" "))//1 2 3 4

3、def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]   将函数应用于RDD中的每一项,对于每一项都产生一个集合,并将集合中的元素压扁成一个集合。

//flatMap
  var source = sc.parallelize(1 to 5)
  source.collect().foreach(e=>print(e+" "))//1 2 3 4 5 
  var sourceMap = source.flatMap(x=>(1 to x))
  sourceMap.collect().foreach(e=>print(e+" "))//1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

4、def mapPartitions[U: ClassTag]( f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U]    将函数应用于RDD的每一个分区,每一个分区运行一次,函数需要能够接受Iterator类型,然后返回Iterator。

package top.ruandb
import org.apache.spark.{SparkConf, SparkContext}
object RddTest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("RddTest").setMaster("local[2]")
    val sc = new SparkContext(sparkConf)
    //mapPartitions
    var source = sc.parallelize(List(("lucy", "female"), ("jack", "male"), ("jams", "male")))
    source.collect().foreach(e => print(e + " "))//(lucy,female) (jack,male) (jams,male)
    var sourceMap = source.mapPartitions(partitionsFun)
    sourceMap.collect().foreach(e => print(e + " ")) //jams jack
  }
  def partitionsFun(iter:Iterator[(String,String)]): Iterator[String] ={
    var males = List[String]()
    while(iter.hasNext){
      val next = iter.next()
      next match {
        case (_,"male") => males = next._1::males
        case _ =>
      }
    }
    return males.iterator
  }
}

5、def mapPartitionsWithIndex[U: ClassTag]( f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U]  将函数应用于RDD中的每一个分区,每一个分区运行一次,函数能够接受 一个分区的索引值 和一个代表分区内所有数据的Iterator类型,需要返回Iterator类型。

package top.ruandb
import org.apache.spark.{SparkConf, SparkContext}
object RddTest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("RddTest").setMaster("local[2]")
    val sc = new SparkContext(sparkConf)
    //mapPartitionsWithIndex
    var source = sc.parallelize(List(("lucy", "female"), ("jack", "male"), ("jams", "male")))
    source.collect().foreach(e => print(e + " "))//(lucy,female) (jack,male) (jams,male)
    var sourceMap = source.mapPartitionsWithIndex(partitionsFunWithIndex)
    sourceMap.collect().foreach(e => print(e + " ")) //[1]jams [1]jack
  }
  def partitionsFunWithIndex(index:Int,iter:Iterator[(String,String)]): Iterator[String] ={
    var males = List[String]()
    while(iter.hasNext){
      val next = iter.next()
      next match {
        case (_,"male") => males="["+index+"]"+next._1 :: males
        case _ =>
      }
    }
    males.iterator
  }
}

6、def sample(withReplacement: Boolean, fraction: Double, seed: Long = Utils.random.nextLong): RDD[T] 在RDD中移seed为种子返回大致上有fraction比例个数据样本RDD,withReplacement表示是否采用放回式抽样。

package top.ruandb
import org.apache.spark.{SparkConf, SparkContext}
object RddTest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("RddTest").setMaster("local[2]")
    val sc = new SparkContext(sparkConf)
    //sample
    var source = sc.parallelize(1 to 10)
    source.collect().foreach(e => print(e + " "))//1 2 3 4 5 6 7 8 9 10
    var sourceMap = source.sample(true,0.4,2)
    sourceMap.collect().foreach(e => print(e + " ")) //1 2 2
  }
}

7、def union(other: RDD[T]): RDD[T]  将两个RDD中的元素进行合并,返回一个新的RDD

//union
var source = sc.parallelize(1 to 3)
source.collect().foreach(e => print(e + " "))//1 2 3 
var rdd = sc.parallelize(6 to 9)
var sourceMap = source.union(rdd)
sourceMap.collect().foreach(e => print(e + " "))//1 2 3 6 7 8 9

8、def intersection(other: RDD[T]): RDD[T]  将两个RDD做交集,返回一个新的RDD

//intersection
var source = sc.parallelize(1 to 8)
source.collect().foreach(e => print(e + " "))//1 2 3 4 5 6 7 8
var rdd = sc.parallelize(6 to 9)
var sourceMap = source.intersection(rdd)
sourceMap.collect().foreach(e => print(e + " "))//6 8 7

9、def distinct(): RDD[T]  将当前RDD进行去重后,返回一个新的RDD

//distinct
var source = sc.parallelize(List(1,1,2,2,3,3,4,4,5,5))
source.collect().foreach(e => print(e + " "))//1 1 2 2 3 3 4 4 5 5 
var sourceMap = source.distinct()
sourceMap.collect().foreach(e => print(e + " "))//4 2 1 3 5

10、def partitionBy(partitioner: Partitioner): RDD[(K, V)]  根据设置的分区器重新将RDD进行分区,返回新的RDD

//partitionBy
var source = sc.parallelize(List((1,"111"),(2,"222"),(3,"333"),(4,"444")),4)
source.collect().foreach(e => print(e + " "))
print("分区数:"+source.partitions.size)//(1,111) (2,222) (3,333) (4,444) 分区数:4
var sourceMap = source.partitionBy(new HashPartitioner(2))
sourceMap.collect().foreach(e => print(e + " "))
print("分区数:"+sourceMap.partitions.size)//(2,222) (4,444) (1,111) (3,333) 分区数:2

11、def reduceByKey(func: (V, V) => V): RDD[(K, V)]   根据Key值将相同Key的元组的值用func进行计算,返回新的RDD

//reduceByKey
var source = sc.parallelize(List(("hello",1),("world",1),("hello",1),("world",1)))
source.collect().foreach(e => print(e + " "))//(hello,1) (world,1) (hello,1) (world,1)
var sourceMap = source.reduceByKey((x,y)=>x+y)
sourceMap.collect().foreach(e => print(e + " "))//(hello,2) (world,2)

12、def groupByKey(): RDD[(K, Iterable[V])]   将相同Key的值进行聚集,输出一个(K, Iterable[V])类型的RDD

//groupByKey
var source = sc.parallelize(List(("hello",1),("world",1),("hello",1),("world",1)))
source.collect().foreach(e => print(e + " "))//(hello,1) (world,1) (hello,1) (world,1)
var sourceMap = source.groupByKey()
sourceMap.collect().foreach(e => print(e + " "))//(hello,CompactBuffer(1, 1)) (world,CompactBuffer(1, 1))

13、def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, numPartitions: Int): RDD[(K, C)]   根据key分别使用CreateCombiner和mergeValue进行相同key的数值聚集,通过mergeCombiners将各个分区最终的结果进行聚集。

package top.ruandb
import org.apache.spark.{ SparkConf, SparkContext}
object RddTest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("RddTest").setMaster("local[2]")
    val sc = new SparkContext(sparkConf)
    //combineByKey 计算平均成绩
    var scores = Array(("lucy", 89), ("jack", 77), ("lucy", 100), ("james", 65), ("jack", 99), 
      ("james", 44))
    var input = sc.parallelize(scores);
    input.collect().foreach(e => print(e + " "))
    //(lucy,89) (jack,77) (lucy,100) (james,65) (jack,99) (james,44)
    var output = input.combineByKey((v) => (v, 1),
        (acc: (Int, Int), v) => (acc._1 + v, acc._2 + 1),
        (acc1: (Int, Int), acc2: (Int, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2))
    output.collect().foreach(e => print(e + " "))//(james,(109,2)) (jack,(176,2)) (lucy,(189,2))
    var result = output.map{case (key,value) => (key,value._1/value._2.toDouble)}
    result.collect().foreach(e => print(e + " "))//(james,54.5) (jack,88.0) (lucy,94.5)
  }
}

14、def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(seqOp: (U, V) => U,

    combOp: (U, U) => U): RDD[(K, U)]   通过seqOp函数将每一个分区里面的数据和初始值迭代带入函数返回最终值,comOp将每一个分区返回的最终值根据key进行合并操作。

 

posted @ 2019-05-08 10:53  技术小白丁  阅读(656)  评论(0编辑  收藏  举报