1、aes256cbc.h

#ifndef _AES256CBC_H_
#define _AES256CBC_H_

#define AES_BLOCKLEN 16
#define AES_KEYLEN 32
#define AES_keyExpSize 240

struct AES_ctx
{
    unsigned char RoundKey[AES_keyExpSize];
    unsigned char Iv[AES_BLOCKLEN];
};

void AES256CBC_init_ctx_iv(struct AES_ctx* ctx, const unsigned char* key, const unsigned char* iv);

void AES256CBC_encrypt(struct AES_ctx* ctx, unsigned char* buf, unsigned  int length);
void AES256CBC_decrypt(struct AES_ctx* ctx, unsigned char* buf, unsigned  int length);


#endif

 

2、aes256cbc.c

#include <string.h>
#include "aes256cbc.h"

#define Nb 4
#define Nk 8
#define Nr 14

#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif

typedef unsigned char state_t[4][4];

// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM - 
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const unsigned char sbox[256] = {
  //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F
  0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };


static const unsigned char rsbox[256] = {
  0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
  0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
  0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
  0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
  0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
  0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
  0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
  0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
  0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
  0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };

static const unsigned char Rcon[11] = {
  0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };



#define getSBoxValue(num) (sbox[(num)])


#define getSBoxInvert(num) (rsbox[(num)])

  // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. 
  static void KeyExpansion(unsigned char* RoundKey, const unsigned char* Key)
  {
      unsigned i, j, k;
      unsigned char tempa[4]; // Used for the column/row operations
      
      // The first round key is the key itself.
      for (i = 0; i < Nk; ++i)
      {
          RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
          RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
          RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
          RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
      }
      
      // All other round keys are found from the previous round keys.
      for (i = Nk; i < Nb * (Nr + 1); ++i)
      {
          {
              k = (i - 1) * 4;
              tempa[0]=RoundKey[k + 0];
              tempa[1]=RoundKey[k + 1];
              tempa[2]=RoundKey[k + 2];
              tempa[3]=RoundKey[k + 3];
              
          }
          
          if (i % Nk == 0)
          {
              // This function shifts the 4 bytes in a word to the left once.
              // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
              
              // Function RotWord()
              {
                  const unsigned char u8tmp = tempa[0];
                  tempa[0] = tempa[1];
                  tempa[1] = tempa[2];
                  tempa[2] = tempa[3];
                  tempa[3] = u8tmp;
              }
              
              // SubWord() is a function that takes a four-byte input word and 
              // applies the S-box to each of the four bytes to produce an output word.
              
              // Function Subword()
              {
                  tempa[0] = getSBoxValue(tempa[0]);
                  tempa[1] = getSBoxValue(tempa[1]);
                  tempa[2] = getSBoxValue(tempa[2]);
                  tempa[3] = getSBoxValue(tempa[3]);
              }
              
              tempa[0] = tempa[0] ^ Rcon[i/Nk];
          }
          if (i % Nk == 4)
          {
              // Function Subword()
              {
                  tempa[0] = getSBoxValue(tempa[0]);
                  tempa[1] = getSBoxValue(tempa[1]);
                  tempa[2] = getSBoxValue(tempa[2]);
                  tempa[3] = getSBoxValue(tempa[3]);
              }
          }
          j = i * 4; k=(i - Nk) * 4;
          RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
          RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
          RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
          RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
      }
}

void AES256CBC_init_ctx_iv(struct AES_ctx* ctx, const unsigned char* key, const unsigned char* iv)
{
    KeyExpansion(ctx->RoundKey, key);
    memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}

static void AddRoundKey(unsigned char round, state_t* state, const unsigned char* RoundKey)
{
    unsigned char i,j;
    for (i = 0; i < 4; ++i)
    {
        for (j = 0; j < 4; ++j)
        {
            (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
        }
    }
}

// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(state_t* state)
{
    unsigned char i, j;
    for (i = 0; i < 4; ++i)
    {
        for (j = 0; j < 4; ++j)
        {
            (*state)[j][i] = getSBoxValue((*state)[j][i]);
        }
    }
}

// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(state_t* state)
{
    unsigned char temp;
    
    // Rotate first row 1 columns to left  
    temp           = (*state)[0][1];
    (*state)[0][1] = (*state)[1][1];
    (*state)[1][1] = (*state)[2][1];
    (*state)[2][1] = (*state)[3][1];
    (*state)[3][1] = temp;
    
    // Rotate second row 2 columns to left  
    temp           = (*state)[0][2];
    (*state)[0][2] = (*state)[2][2];
    (*state)[2][2] = temp;
    
    temp           = (*state)[1][2];
    (*state)[1][2] = (*state)[3][2];
    (*state)[3][2] = temp;
    
    // Rotate third row 3 columns to left
    temp           = (*state)[0][3];
    (*state)[0][3] = (*state)[3][3];
    (*state)[3][3] = (*state)[2][3];
    (*state)[2][3] = (*state)[1][3];
    (*state)[1][3] = temp;
}

static unsigned char xtime(unsigned char x)
{
    return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}

// MixColumns function mixes the columns of the state matrix
static void MixColumns(state_t* state)
{
    unsigned char i;
    unsigned char Tmp, Tm, t;
    for (i = 0; i < 4; ++i)
    {  
        t   = (*state)[i][0];
        Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
        Tm  = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm);  (*state)[i][0] ^= Tm ^ Tmp ;
        Tm  = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm);  (*state)[i][1] ^= Tm ^ Tmp ;
        Tm  = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm);  (*state)[i][2] ^= Tm ^ Tmp ;
        Tm  = (*state)[i][3] ^ t ;              Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp ;
    }
}

#if MULTIPLY_AS_A_FUNCTION
static unsigned char Multiply(unsigned char x, unsigned char y)
{
    return (((y & 1) * x) ^
        ((y>>1 & 1) * xtime(x)) ^
        ((y>>2 & 1) * xtime(xtime(x))) ^
        ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
        ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
#else
#define Multiply(x, y)                                \
    (  ((y & 1) * x) ^                              \
    ((y>>1 & 1) * xtime(x)) ^                       \
    ((y>>2 & 1) * xtime(xtime(x))) ^                \
    ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^         \
    ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))   \
    
#endif

static void InvMixColumns(state_t* state)
{
    int i;
    unsigned char a, b, c, d;
    for (i = 0; i < 4; ++i)
    { 
        a = (*state)[i][0];
        b = (*state)[i][1];
        c = (*state)[i][2];
        d = (*state)[i][3];
        
        (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
        (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
        (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
        (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
    }
}

static void InvSubBytes(state_t* state)
{
    unsigned char i, j;
    for (i = 0; i < 4; ++i)
    {
        for (j = 0; j < 4; ++j)
        {
            (*state)[j][i] = getSBoxInvert((*state)[j][i]);
        }
    }
}


static void InvShiftRows(state_t* state)
{
    unsigned char temp;
    
    // Rotate first row 1 columns to right  
    temp = (*state)[3][1];
    (*state)[3][1] = (*state)[2][1];
    (*state)[2][1] = (*state)[1][1];
    (*state)[1][1] = (*state)[0][1];
    (*state)[0][1] = temp;
    
    // Rotate second row 2 columns to right 
    temp = (*state)[0][2];
    (*state)[0][2] = (*state)[2][2];
    (*state)[2][2] = temp;
    
    temp = (*state)[1][2];
    (*state)[1][2] = (*state)[3][2];
    (*state)[3][2] = temp;
    
    // Rotate third row 3 columns to right
    temp = (*state)[0][3];
    (*state)[0][3] = (*state)[1][3];
    (*state)[1][3] = (*state)[2][3];
    (*state)[2][3] = (*state)[3][3];
    (*state)[3][3] = temp;
}

static void Cipher(state_t* state, const unsigned char* RoundKey)
{
    unsigned char round = 0;
    
    // Add the First round key to the state before starting the rounds.
    AddRoundKey(0, state, RoundKey); 
    
    // There will be Nr rounds.
    // The first Nr-1 rounds are identical.
    // These Nr-1 rounds are executed in the loop below.
    for (round = 1; round < Nr; ++round)
    {
        SubBytes(state);
        ShiftRows(state);
        MixColumns(state);
        AddRoundKey(round, state, RoundKey);
    }
    
    // The last round is given below.
    // The MixColumns function is not here in the last round.
    SubBytes(state);
    ShiftRows(state);
    AddRoundKey(Nr, state, RoundKey);
}

static void InvCipher(state_t* state, const unsigned char* RoundKey)
{
    unsigned char round = 0;
    
    // Add the First round key to the state before starting the rounds.
    AddRoundKey(Nr, state, RoundKey); 
    
    // There will be Nr rounds.
    // The first Nr-1 rounds are identical.
    // These Nr-1 rounds are executed in the loop below.
    for (round = (Nr - 1); round > 0; --round)
    {
        InvShiftRows(state);
        InvSubBytes(state);
        AddRoundKey(round, state, RoundKey);
        InvMixColumns(state);
    }
    
    // The last round is given below.
    // The MixColumns function is not here in the last round.
    InvShiftRows(state);
    InvSubBytes(state);
    AddRoundKey(0, state, RoundKey);
}

static void XorWithIv(unsigned char* buf, const unsigned char* Iv)
{
    unsigned char i;
    for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
    {
        buf[i] ^= Iv[i];
    }
}

void AES256CBC_encrypt(struct AES_ctx *ctx, unsigned char* buf, unsigned  int length)
{
    unsigned  int i;
    unsigned char *Iv = ctx->Iv;
    for (i = 0; i < length; i += AES_BLOCKLEN)
    {
        XorWithIv(buf, Iv);
        Cipher((state_t*)buf, ctx->RoundKey);
        Iv = buf;
        buf += AES_BLOCKLEN;
        //printf("Step %d - %d", i/16, i);
    }
    /* store Iv in ctx for next call */
    memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}

void AES256CBC_decrypt(struct AES_ctx* ctx, unsigned char* buf,  unsigned  int length)
{
    unsigned  int i;
    unsigned char storeNextIv[AES_BLOCKLEN];
    for (i = 0; i < length; i += AES_BLOCKLEN)
    {
        memcpy(storeNextIv, buf, AES_BLOCKLEN);
        InvCipher((state_t*)buf, ctx->RoundKey);
        XorWithIv(buf, ctx->Iv);
        memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
        buf += AES_BLOCKLEN;
    }
    
}

 

test

#include <stdio.h>
#include <string.h>
#include "aes256cbc.h"


#define IV_LEN 16
#define KEY_LEN 32 //256 bit
#define DATA_LEN 64 //data length must be : length % 16 == 0 and less than 4G Bytes

int main()
{
    unsigned char iv[IV_LEN]  = { 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff };
    unsigned char key[KEY_LEN] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
        0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };
    
    unsigned char data[DATA_LEN] = {0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28, 
        0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a, 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5, 
        0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c, 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d, 
        0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6, 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6 };

    //compare with openssl 
    /*AES_KEY aes_key;
    unsigned char data_in[DATA_LEN];
    unsigned char data_out[DATA_LEN];
    unsigned char iv_in[IV_LEN];
    memcpy(data_in,data,DATA_LEN);
    
    AES_set_encrypt_key(key, KEY_LEN*8, &aes_key);// 2nd parameter is bits of key length
    memcpy(iv_in,iv,IV_LEN);
    AES_cbc_encrypt(data_in,data_out,DATA_LEN,&aes_key,iv_in,AES_ENCRYPT);
    //-------------------------------------------------------------------------//
    AES_set_decrypt_key(key, KEY_LEN*8, &aes_key); 
    memcpy(iv_in,iv,IV_LEN);
    AES_cbc_encrypt(data_out, data_in, DATA_LEN, &aes_key, iv_in, AES_DECRYPT);
    //end compare with openssl 
    */



    //begin test 
    struct AES_ctx ctx;
    AES256CBC_init_ctx_iv(&ctx, key, iv);
    AES256CBC_encrypt(&ctx, data, DATA_LEN);

    //must re-initiate after use key and iv 
    AES256CBC_init_ctx_iv(&ctx, key, iv);
    AES256CBC_decrypt(&ctx, data, DATA_LEN);


    return 0;
}