朴素贝叶斯分类器的应用
朴素贝叶斯分类实例:检测SNS社区中不真实账号
朴素贝叶斯分类器的公式
假设某个体有n项特征(Feature),分别为F 1 、F 2 、...、F n 。现有m个类别(Category),分别为C 1 、C 2 、...、C m 。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值:
P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C) / P(F1F2...Fn)
由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求
P(F1F2...Fn|C)P(C)
的最大值。
朴素贝叶斯分类器则是更进一步,假设所有特征都彼此独立,因此
P(F1F2...Fn|C)P(C)
= P(F1|C)P(F2|C) ... P(Fn|C)P(C)
上式等号右边的每一项,都可以从统计资料中得到,由此就可以计算出每个类别对应的概率,从而找出最大概率的那个类。
虽然"所有特征彼此独立"这个假设,在现实中不太可能成立,但是它可以大大简化计算,而且有研究表明对分类结果的准确性影响不大。
下面再通过两个例子,来看如何使用朴素贝叶斯分类器。
三、账号分类的例子
本例摘自张洋的 《算法杂货铺----分类算法之朴素贝叶斯分类》 。
根据某社区网站的抽样统计,该站10000个账号中有89%为真实账号(设为C 0 ),11%为虚假账号(设为C 1 )。
C0 = 0.89
C1 = 0.11
接下来,就要用统计资料判断一个账号的真实性。假定某一个账号有以下三个特征:
F1: 日志数量/注册天数
F2: 好友数量/注册天数
F3: 是否使用真实头像(真实头像为1,非真实头像为0)F1 = 0.1
F2 = 0.2
F3 = 0
请问该账号是真实账号还是虚假账号?
方法是使用朴素贝叶斯分类器,计算下面这个计算式的值。
P(F1|C)P(F2|C)P(F3|C)P(C)
虽然上面这些值可以从统计资料得到,但是这里有一个问题:F1和F2是连续变量,不适宜按照某个特定值计算概率。
一个技巧是将连续值变为离散值,计算区间的概率。比如将F1分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞]三个区间,然后计算每个区间的概率。在我们这个例子中,F1等于0.1,落在第二个区间,所以计算的时候,就使用第二个区间的发生概率。
根据统计资料,可得:
P(F1|C0) = 0.5, P(F1|C1) = 0.1
P(F2|C0) = 0.7, P(F2|C1) = 0.2
P(F3|C0) = 0.2, P(F3|C1) = 0.9
因此,
P(F1|C0) P(F2|C0) P(F3|C0) P(C0)
= 0.5 x 0.7 x 0.2 x 0.89
= 0.0623P(F1|C1) P(F2|C1) P(F3|C1) P(C1)
= 0.1 x 0.2 x 0.9 x 0.11
= 0.00198
可以看到,虽然这个用户没有使用真实头像,但是他是真实账号的概率,比虚假账号高出30多倍,因此判断这个账号为真。
http://ju.outofmemory.cn/entry/119593