[poj1741 Tree]树上点分治

题意:给一个N个节点的带权树,求长度小于等于K的路径条数

思路:选取一个点作为根root,假设f(root)是当前树的答案,那么答案来源于两部分:

(1)路径不经过root,那么就是完全在子树内,这部分可以递归统计

(2)路径经过root,这部分可以通过容斥原理统计,具体见有关点分治资料。。。

点分治有个特点,当考虑的问题由根这个子树转为儿子的子树时,可以选取任意点作为新的根,只要它在儿子的子树内,这就使得我们可以通过选取特别的点使得树深度更小,这个点就是树的重心(在程序里面是不断找子树的重心),树分治的复杂度是O(NH+TH)的,其中H是树的深度,T是每层计算答案的复杂度,重心可以将树的深度变成O(logN)。

另外,整体看树分治的遍历节点的过程,发现它与建堆的过程十分相似,也就从侧面说明了树分治的复杂度。。。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <map>
#include <vector>
using namespace std;
#define X first
#define Y second
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define all(a) (a).begin(), (a).end()
#define mset(a, x) memset(a, x, sizeof(a))
#define mcpy(a, b) memcpy(a, b, sizeof(b))
#define cas() int T, cas = 0; cin >> T; while (T --)
template<typename T>bool umax(T&a, const T&b){return a<b?(a=b,true):false;}
template<typename T>bool umin(T&a, const T&b){return b<a?(a=b,true):false;}
typedef long long ll;
typedef pair<int, int> pii;

#ifndef ONLINE_JUDGE
    #include "local.h"
#endif

const int N = 1e4 + 7;
const int M = N;
const int inf = 1e9 + 7;

namespace Edge {
    int last[N], to[M << 1], w[M << 1], next[M << 1], cntE;
    void init() {
        cntE = 0;
        memset(last, -1, sizeof(last));
    }
    void addEdge(int u, int v, int w) {
        to[cntE] = v;
        Edge::w[cntE] = w;
        next[cntE] = last[u];
        last[u] = cntE ++;
    }
}

int n, K;

namespace Center {
    int root, siz, son[N];
    void init() {
        siz = inf;
    }
    void getRoot(int cur, int fa, int total, bool used[]) {
        son[cur] = 0;
        int buf = 0;
        for (int i = Edge::last[cur]; ~i; i = Edge::next[i]) {
            int to = Edge::to[i];
            if (to != fa && !used[to]) {
                getRoot(to, cur, total, used);
                son[cur] += son[to] + 1;
                buf = max(buf, son[to] + 1);
            }
        }
        buf = max(buf, total - son[cur] - 1);
        if (buf < siz || buf == siz && cur < siz) {
            siz = buf;
            root = cur;
        }
    }
}

void getDepth(int cur, int fa, int sum, vector<int> &vt, bool used[]) {
    vt.pb(sum);
    for (int i = Edge::last[cur]; ~i; i = Edge::next[i]) {
        int to = Edge::to[i], w = Edge::w[i];
        if (to != fa && !used[to]) getDepth(to, cur, sum + w, vt, used);
    }
}

int getAns(vector<int> &vt) {
    sort(all(vt));
    int maxp = vt.size() - 1, ans = 0;
    for (int i = 0; i < maxp; i ++) {
        while (i < maxp && vt[i] + vt[maxp] > K) maxp --;
        ans += maxp - i;
    }
    return ans;
}

bool used[N];

int work(int cur) {
    used[cur] = true;
    vector<int> total;
    total.push_back(0);
    int ans = 0;
    for (int i = Edge::last[cur]; ~i; i = Edge::next[i]) {
        int to = Edge::to[i], w = Edge::w[i];
        if (!used[to]) {
            vector<int> local;
            getDepth(to, cur, w, local, used);
            ans -= getAns(local);
            for (int j = 0; j < local.size(); j ++) {
                total.push_back(local[j]);
            }
            Center::init();
            Center::getRoot(to, cur, local.size(), used);
            ans += work(Center::root);
        }
    }
    return ans += getAns(total);
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
    while (cin >> n >> K, n || K) {
        int u, v, w;
        Edge::init();
        Center::init();
        mset(used, 0);
        for (int i = 1; i < n; i ++) {
            scanf("%d%d%d", &u, &v, &w);
            Edge::addEdge(u, v, w);
            Edge::addEdge(v, u, w);
        }
        Center::getRoot(1, 0, n, used);
        cout << work(Center::root) << endl;
    }
    return 0;
}

  

posted @ 2015-11-12 19:38  jklongint  阅读(503)  评论(0编辑  收藏  举报