{bzoj2338 [HNOI2011]数矩形 && NBUT 1453 LeBlanc}平面内找最大矩形
思路:
- 枚举3个点,计算第4个点并判断是否存在,复杂度为O(N3logN)或O(N3α)
- 考虑矩形的对角线,两条对角线可以构成一个矩形,它们的长度和中点必须完全一样,于是将所有线段按长度和中点排序,那么所有可能构成矩形的线段(对角线)一定在连续的区间内,顺序枚举即可,复杂度O(N2logN)。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
#pragma comment(linker, "/STACK:10240000") #include <map> #include <set> #include <cmath> #include <ctime> #include <deque> #include <queue> #include <stack> #include <vector> #include <cstdio> #include <string> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define X first #define Y second #define pb push_back #define mp make_pair #define all(a) (a).begin(), (a).end() #define fillchar(a, x) memset(a, x, sizeof(a)) #define copy(a, b) memcpy(a, b, sizeof(a)) typedef long long ll; typedef pair<int, int> pii; typedef unsigned long long ull; #ifndef ONLINE_JUDGE void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);} void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R> void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1; while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T> void print(const T t){cout<<t<<endl;}template<typename F,typename...R> void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T> void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;} #endif template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);} template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);} const double PI = acos(-1.0); const int INF = 1e9 + 7; const double EPS = 1e-12; /* -------------------------------------------------------------------------------- */ const int maxn = 1e2 + 7; struct Point { int x, y; Point(int x, int y) { this->x = x; this->y = y; } Point operator + (const Point &that) const { return Point(x + that.x, y + that.y); } Point operator - (const Point &that) const { return Point(x - that.x, y - that.y); } inline ll sqr(ll a) { return a * a; } ll dist(const Point &that) { return sqr(x - that.x) + sqr(y - that.y); } bool operator < (const Point &that) const { return x == that.x? y < that.y : x < that.x; } bool operator == (const Point &that) const { return x == that.x && y == that.y; } Point() {} }; struct Line { Point a, b, mid; ll len; Line(Point a, Point b) { this->a = a; this->b = b; mid = a + b; len = a.dist(b); } Line() {} bool operator < (const Line &that) const { return len == that.len? mid < that.mid : len < that.len; } }; vector<Line> line; Point p[maxn]; bool equal(const Line &a, const Line &b) { return a.len == b.len && a.mid == b.mid; } ll cross(Point a, Point b) { return (ll)a.x * b.y - (ll)a.y * b.x; } ll Area(const Line &a, Line &b) { return abs(cross(a.a - a.b, b.a - b.b) / 2); } int main() { #ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); #endif // ONLINE_JUDGE int n; while (cin >> n) { for (int i = 0; i < n; i ++) { scanf("%d%d", &p[i].x, &p[i].y); } line.clear(); for (int i = 0; i < n; i ++) { for (int j = i + 1; j < n; j ++) { line.pb(Line(p[i], p[j])); } } sort(all(line)); ll area = - 1; for (int i = 1; i < line.size(); i ++) { for (int j = i - 1; j >= 0 && equal(line[i], line[j]); j --) { umax(area, Area(line[i], line[j])); } } if (area < 0) puts("No Eyes"); else cout << area << ".0000" << endl; } return 0; } |