{bzoj2338 [HNOI2011]数矩形 && NBUT 1453 LeBlanc}平面内找最大矩形

思路:

  1. 枚举3个点,计算第4个点并判断是否存在,复杂度为O(N3logN)或O(N3α)
  2. 考虑矩形的对角线,两条对角线可以构成一个矩形,它们的长度和中点必须完全一样,于是将所有线段按长度和中点排序,那么所有可能构成矩形的线段(对角线)一定在连续的区间内,顺序枚举即可,复杂度O(N2logN)。

 

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#pragma comment(linker, "/STACK:10240000")
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

#define X                   first
#define Y                   second
#define pb                  push_back
#define mp                  make_pair
#define all(a)              (a).begin(), (a).end()
#define fillchar(a, x)      memset(a, x, sizeof(a))
#define copy(a, b)          memcpy(a, b, sizeof(a))

typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;

#ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}

const double PI = acos(-1.0);
const int INF = 1e9 + 7;
const double EPS = 1e-12;

/* -------------------------------------------------------------------------------- */

const int maxn = 1e2 + 7;

struct Point {
    int x, y;
    Point(int x, int y) {
        this->x = x;
        this->y = y;
    }
    Point operator + (const Point &that) const {
        return Point(x + that.x, y + that.y);
    }
    Point operator - (const Point &that) const {
        return Point(x - that.x, y - that.y);
    }
    inline ll sqr(ll a) {
        return a * a;
    }
    ll dist(const Point &that) {
        return sqr(x - that.x) + sqr(y - that.y);
    }
    bool operator < (const Point &that) const {
        return x == that.x? y < that.y : x < that.x;
    }
    bool operator == (const Point &that) const {
        return x == that.x && y == that.y;
    }
    Point() {}
};

struct Line {
    Point a, b, mid;
    ll len;
    Line(Point a, Point b) {
        this->a = a;
        this->b = b;
        mid = a + b;
        len = a.dist(b);
    }
    Line() {}
    bool operator < (const Line &that) const {
        return len == that.len? mid < that.mid : len < that.len;
    }
};
vector<Line> line;
Point p[maxn];

bool equal(const Line &a, const Line &b) {
    return a.len == b.len && a.mid == b.mid;
}

ll cross(Point a, Point b) {
    return (ll)a.x * b.y - (ll)a.y * b.x;
}

ll Area(const Line &a, Line &b) {
    return abs(cross(a.a - a.b, b.a - b.b) / 2);
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
    int n;
    while (cin >> n) {
        for (int i = 0; i < n; i ++) {
            scanf("%d%d", &p[i].x, &p[i].y);
        }
        line.clear();
        for (int i = 0; i < n; i ++) {
            for (int j = i + 1; j < n; j ++) {
                line.pb(Line(p[i], p[j]));
            }
        }
        sort(all(line));
        ll area = - 1;
        for (int i = 1; i < line.size(); i ++) {
            for (int j = i - 1; j >= 0 && equal(line[i], line[j]); j --) {
                umax(area, Area(line[i], line[j]));
            }
        }
        if (area < 0) puts("No Eyes");
        else cout << area << ".0000" << endl;
    }
    return 0;
}
posted @ 2015-08-22 00:01  jklongint  阅读(180)  评论(0编辑  收藏  举报