[CodeForces 300D Painting Square]DP
http://codeforces.com/problemset/problem/300/D
题意:每一次操作可以选一个正方形,令边长为n,如果n为奇数那么可以从中间画一个十字,分成4个大小相等的边长为(n-1)/2的正方形。给一个正方形,求操作k次后能得到的不同图案的个数
思路:令f(s,k)表示边长为s的正方形操作k次后的答案总数,则f(s,k)=∑f(s/2,k1)*f(s/2,k2)*f(s/2,k3)*f(s/2,k4),其中s为奇数,k1+k2+k3+k4=k-1,令g(s,k)=Σf(s,k1)*f(s,k2),其中s为奇数,k1+k2=k。那么有f(s,k)=Σg(s/2,k')*g(s/2,k-1-k'),g(s,k)=Σf(s,k')*f(s,k-k'),其中s为奇数,k'取遍所有可能的值。由于s最多递归logs层,所以用一个不超过logs的数和k表示状态即可,然后递推计算,复杂度O(k2logs)。
#include <map> #include <set> #include <cmath> #include <ctime> #include <deque> #include <queue> #include <stack> #include <vector> #include <cstdio> #include <string> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define X first #define Y second #define pb push_back #define mp make_pair #define all(a) (a).begin(), (a).end() #define fillchar(a, x) memset(a, x, sizeof(a)) #define copy(a, b) memcpy(a, b, sizeof(a)) typedef long long ll; typedef pair<int, int> pii; typedef unsigned long long ull; //#ifndef ONLINE_JUDGE void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);} void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R> void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1; while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T> void print(const T t){cout<<t<<endl;}template<typename F,typename...R> void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T> void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;} //#endif template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);} template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);} template<typename T> void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];} template<typename T> void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];} const double PI = acos(-1.0); const int INF = 1e9 + 7; const double EPS = 1e-8; /* -------------------------------------------------------------------------------- */ template<int mod> struct ModInt { const static int MD = mod; int x; ModInt(ll x = 0): x(x % MD) {} int get() { return x; } ModInt operator + (const ModInt &that) const { int x0 = x + that.x; return ModInt(x0 < MD? x0 : x0 - MD); } ModInt operator - (const ModInt &that) const { int x0 = x - that.x; return ModInt(x0 < MD? x0 + MD : x0); } ModInt operator * (const ModInt &that) const { return ModInt((long long)x * that.x % MD); } ModInt operator / (const ModInt &that) const { return *this * that.inverse(); } ModInt operator += (const ModInt &that) { x += that.x; if (x >= MD) x -= MD; } ModInt operator -= (const ModInt &that) { x -= that.x; if (x < 0) x += MD; } ModInt operator *= (const ModInt &that) { x = (long long)x * that.x % MD; } ModInt operator /= (const ModInt &that) { *this = *this / that; } ModInt inverse() const { int a = x, b = MD, u = 1, v = 0; while(b) { int t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if(u < 0) u += MD; return u; } }; typedef ModInt<7340033> mint; mint dp[31][1010], f[31][1010]; void pre_init() { for (int i = 1; i <= 30; i ++) dp[i][0] = f[i][0] = 1; for (int i = 2; i <= 30; i ++) { dp[i][1] = 1; f[i][1] = 2; for (int j = 2; j <= 1000; j ++) { for (int k = 0; k <= j; k ++) { dp[i][j] += f[i - 1][k] * f[i - 1][j - k - 1]; } for (int k = 0; k <= j; k ++) { f[i][j] += dp[i][k] * dp[i][j - k]; } } } } int work(int n, int k) { if (k == 0) return 1; int p = 0; while (n & 1) { p ++; n = (n - 1) / 2; } if (n) p ++; return dp[p][k].get(); } int main() { #ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); #endif // ONLINE_JUDGE int n, T, k; pre_init(); while (cin >> T) { while (T --) { scanf("%d%d", &n, &k); printf("%d\n", work(n, k)); } } return 0; }