[hdu4627 The Unsolvable Problem]数论

题意:给一个数n,找一个正整数x<n,使得x和n-x的最小公倍数最大。

思路:显然x和n-x越接近越好,gcd必须为1(贪心)。从大到小考虑x,如果n为奇数,则答案就是x=n/2,如果n为偶数,令n=2k,如果k为奇数,且大于1则x=k-2否则x=k,如果k为偶数则x=k-1。以上结论基于以下两个事实:

(1)相邻两个数的gcd为1

(2)相邻两个奇数的gcd为1

(3)1和1的gcd为1

写的时候没用到这些事实,直接从n/2向下枚举,当gcd为1时得到答案

 

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

#define X                   first
#define Y                   second
#define pb                  push_back
#define mp                  make_pair
#define all(a)              (a).begin(), (a).end()
#define fillchar(a, x)      memset(a, x, sizeof(a))
#define copy(a, b)          memcpy(a, b, sizeof(a))

typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;

//#ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
//#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
template<typename T>
void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}
template<typename T>
void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}

#if 0
const double PI = acos(-1.0);
const int INF = 1e9 + 7;
const double EPS = 1e-8;
#endif
/* -------------------------------------------------------------------------------- */

ll gcd(ll a, ll b) { return b? gcd(b, a % b) : a; }

ll work(int n) {
    int x = n / 2;
    for (int i = x; i; i --) {
        if (gcd(i, n - i) == 1) return (ll)i * (n - i) / gcd(i, n - i);
    }
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
    int T, x;
    cin >> T;
    while (T --) {
        scanf("%d", &x);
        cout << work(x) << endl;
    }
    return 0;
}
posted @ 2015-08-12 15:06  jklongint  阅读(231)  评论(0编辑  收藏  举报