[hdu5379 Mahjong tree]dfs计数

题意:给n个节点的树编号1-n,一个节点唯一对应一种编号,要求编完号的树满足如下性质:所有节点的儿子的编号是连续的,对一棵子树,它包含的所有节点的编号也是连续的。连续的意思是把所有数排序后是一段连续的区间。

思路:由于所有子树是连续的,所以可以用区间来表示子树,设要给当前子树编号为[1,n],如果当前子树是原树,那么根有两种选择,分别是放头和尾(如果n等于1,那么头和尾重合了,也就是只有1种选择),如果不是原树,那么根的选择是唯一的,因为在考虑它的父亲的时候,它的位置就确定了。如果它的非叶子节点的儿子数目超过两个,显然是无解的,否则就有解,设叶子节点的儿子个数为cnt,答案就是cnt!,如果有非叶子节点的儿子,那么这个儿子可以放头也可以放尾,答案还要乘上2。

 

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#pragma comment(linker, "/STACK:1024000000")
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

#define X                   first
#define Y                   second
#define pb                  push_back
#define mp                  make_pair
#define all(a)              (a).begin(), (a).end()
#define fillchar(a, x)      memset(a, x, sizeof(a))
#define copy(a, b)          memcpy(a, b, sizeof(a))

typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;

//#ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
//#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
template<typename T>
void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}
template<typename T>
void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}

#if 0
const double PI = acos(-1.0);
const int INF = 1e9 + 7;
const double EPS = 1e-8;
#endif

/* -------------------------------------------------------------------------------- */

const int maxn = 1e5 + 7;
const int md = 1e9 + 7;

struct Graph {
    vector<vector<int> > G;
    void clear() { G.clear(); }
    void resize(int n) { G.resize(n + 2); }
    void add(int u, int v) { G[u].push_back(v); }
    vector<int> & operator [] (int u) { return G[u]; }
};
Graph G;

bool vis[maxn];
int SZ[maxn], fac[maxn];

void pre_init() {
    fac[0] = 1;
    for (int i = 1; i < maxn; i ++) fac[i] = (ll)fac[i - 1] * i % md;
}

int dfs(int rt) {
    vis[rt] = true;
    SZ[rt] = 1;
    int cnt1 = 0, cnt2 = 0, ans = 1;
    for (int i = 0; i < G[rt].size(); i ++) {
        int v = G[rt][i];
        if (!vis[v]) {
            ans = (ll)ans * dfs(v) % md;
            SZ[rt] += SZ[v];
            if (SZ[v] <= 1) cnt1 ++;
            else cnt2 ++;
        }
    }
    if (cnt2 > 2) return 0;
    ans = (ll)ans * fac[cnt1] % md;
    return cnt2? 2 * ans % md : ans;
}


int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
    int T, cas = 0, n, u, v;
    pre_init();
    cin >> T;
    while (T --) {
        cin >> n;
        G.clear();
        G.resize(n);
        for (int i = 1; i < n; i ++) {
            scanf("%d%d", &u, &v);
            G.add(u, v);
            G.add(v, u);
        }
        fillchar(vis, 0);
        fillchar(SZ, 0);
        printf("Case #%d: %d\n", ++ cas, dfs(1) * (n >= 2? 2 : 1) % md);
    }
    return 0;
}
posted @ 2015-08-12 14:28  jklongint  阅读(225)  评论(0编辑  收藏  举报