[hdu5358]分类统计,利用单调性优化
题意:直接来链接吧http://acm.hdu.edu.cn/showproblem.php?pid=5358
思路:注意S(i,j)具有区间连续性且单调,而⌊log2x⌋具有区间不变性,于是考虑枚举⌊log2S(i,j)⌋的值,然后枚举i,从而能得到j的区间范围,然后统计答案即可。
另外这题比较坑,先枚举 ⌊log2S(i,j)⌋再枚举i 老是TLE,加了各种常数优化还是TLE,换成先枚举i再枚举⌊log2S(i,j)⌋就过了。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | #include <map> #include <set> #include <cmath> #include <ctime> #include <deque> #include <queue> #include <stack> #include <vector> #include <cstdio> #include <string> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define X first #define Y second #define pb push_back #define mp make_pair #define all(a) (a).begin(), (a).end() #define fillchar(a, x) memset(a, x, sizeof(a)) typedef long long ll; typedef pair< int , int > pii; typedef unsigned long long ull; #ifndef ONLINE_JUDGE void RI(vector< int >&a, int n){a.resize(n); for ( int i=0;i<n;i++) scanf ( "%d" ,&a[i]);} void RI(){} void RI( int &X){ scanf ( "%d" ,&X);} template < typename ...R> void RI( int &f,R&...r){RI(f);RI(r...);} void RI( int *p, int *q){ int d=p<q?1:-1; while (p!=q){ scanf ( "%d" ,p);p+=d;}} void print(){cout<<endl;} template < typename T> void print( const T t){cout<<t<<endl;} template < typename F, typename ...R> void print( const F f, const R...r){cout<<f<< ", " ;print(r...);} template < typename T> void print(T*p, T*q){ int d=p<q?1:-1; while (p!=q){cout<<*p<< ", " ;p+=d;}cout<<endl;} #endif template < typename T> bool umax(T&a, const T&b){ return b<=a? false :(a=b, true );} template < typename T> bool umin(T&a, const T&b){ return b>=a? false :(a=b, true );} template < typename T> void V2A(T a[], const vector<T>&b){ for ( int i=0;i<b.size();i++)a[i]=b[i];} template < typename T> void A2V(vector<T>&a, const T b[]){ for ( int i=0;i<a.size();i++)a[i]=b[i];} const double PI = acos (-1.0); const int INF = 1e9 + 7; /* -------------------------------------------------------------------------------- */ #define f(a, b) (((a) + (b)) * ((b) - (a) + 1) / 2) int a[123456], minj[123456], maxj[123456]; ll sum[123456]; int main() { #ifndef ONLINE_JUDGE freopen ( "in.txt" , "r" , stdin); //freopen("out.txt", "w", stdout); #endif // ONLINE_JUDGE int T; cin >> T; while (T --) { int n; scanf ( "%d" , &n); for ( int i = 1; i <= n; i ++) { scanf ( "%d" , a + i); sum[i] = sum[i - 1] + a[i]; } ll ans = 0; fillchar(minj, 0); fillchar(maxj, 0); for ( int i = 1; i <= n; i ++) { ll now = sum[i - 1]; for ( int t = 0; ; t ++) { ll Min = 1LL << t, Max = (1LL << (t + 1)) - 1; if (Min == 1) Min = 0; if (a[i] > Max) continue ; while ((sum[minj[t]] - now < Min || minj[t] < i) && minj[t] <= n) minj[t] ++; while ((sum[maxj[t] + 1] - now <= Max || maxj[t] < i) && maxj[t] < n) maxj[t] ++; if (minj[t] > n) break ; ll L = minj[t], R = maxj[t]; ans += (ll)(t + 1) * ((R - L + 1) * i + (L + R) * (R - L + 1) / 2); //print(i, t, L, R); } } cout << ans << endl; } return 0; } |