[hdu5358]分类统计,利用单调性优化

题意:直接来链接吧http://acm.hdu.edu.cn/showproblem.php?pid=5358

思路:注意S(i,j)具有区间连续性且单调,而log2x具有区间不变性,于是考虑枚举log2S(i,j)⌋的值,然后枚举i,从而能得到j的区间范围,然后统计答案即可。

另外这题比较坑,先枚举 log2S(i,j)⌋再枚举i 老是TLE,加了各种常数优化还是TLE,换成先枚举i再枚举log2S(i,j)⌋就过了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
 
using namespace std;
 
#define X                   first
#define Y                   second
#define pb                  push_back
#define mp                  make_pair
#define all(a)              (a).begin(), (a).end()
#define fillchar(a, x)      memset(a, x, sizeof(a))
 
typedef long long ll;
typedef pair<intint> pii;
typedef unsigned long long ull;
 
#ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
template<typename T>
void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}
template<typename T>
void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}
 
const double PI = acos(-1.0);
const int INF = 1e9 + 7;
 
/* -------------------------------------------------------------------------------- */
 
#define f(a, b) (((a) + (b)) * ((b) - (a) + 1) / 2)
 
int a[123456], minj[123456], maxj[123456];
ll sum[123456];
 
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
    //freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
    int T;
    cin >> T;
    while (T --) {
        int n;
        scanf("%d", &n);
        for (int i = 1; i <= n; i ++) {
            scanf("%d", a + i);
            sum[i] = sum[i - 1] + a[i];
        }
        ll ans = 0;
        fillchar(minj, 0);
        fillchar(maxj, 0);
        for (int i = 1; i <= n; i ++) {
            ll now = sum[i - 1];
            for (int t = 0; ; t ++) {
                ll Min = 1LL << t, Max = (1LL << (t + 1)) - 1;
                if (Min == 1) Min = 0;
                if (a[i] > Max) continue;
                while ((sum[minj[t]] - now < Min || minj[t] < i) && minj[t] <= n) minj[t] ++;
                while ((sum[maxj[t] + 1] - now <= Max || maxj[t] < i) && maxj[t] < n) maxj[t] ++;
                if (minj[t] > n) break;
                ll L = minj[t], R = maxj[t];
                ans += (ll)(t + 1) * ((R - L + 1) * i + (L + R) * (R - L + 1) / 2);
                //print(i, t, L, R);
            }
        }
        cout << ans << endl;
    }
    return 0;
}


pasting
posted @ 2015-08-07 04:26  jklongint  阅读(325)  评论(0编辑  收藏  举报