[hdu1402]大数乘法(FFT模板)

题意:大数乘法

思路:FFT模板

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/* ******************************************************************************** */
#include <iostream>                                                                 //
#include <cstdio>                                                                   //
#include <cmath>                                                                    //
#include <cstdlib>                                                                  //
#include <cstring>                                                                  //
#include <vector>                                                                   //
#include <ctime>                                                                    //
#include <deque>                                                                    //
#include <queue>                                                                    //
#include <algorithm>                                                                //
#include <map>                                                                      //
#include <cmath>                                                                    //
using namespace std;                                                                //
                                                                                    //
#define pb push_back                                                                //
#define mp make_pair                                                                //
#define X first                                                                     //
#define Y second                                                                    //
#define all(a) (a).begin(), (a).end()                                               //
#define foreach(a, i) for (typeof(a.begin()) i = a.begin(); i != a.end(); ++ i)     //
#define foreach(a, n, i) for(typeof(*a) *i = a; i < a + n; i ++)                    //
#define fillchar(a, x) memset(a, x, sizeof(a))                                      //
                                                                                    //
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}    //
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>                    //
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;          //
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>      //
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>              //
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>   //
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}   //
                                                                                    //
typedef pair<intint> pii;                                                         //
typedef long long ll;                                                               //
typedef unsigned long long ull;                                                     //
                                                                                    //
template<typename T>bool umax(T&a, const T&b){return b>a?false:(a=b,true);}         //
template<typename T>bool umin(T&a, const T&b){return b<a?false:(a=b,true);}         //
template<typename T>                                                                //
void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}            //
template<typename T>                                                                //
void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}            //
                                                                                    //
const double PI = acos(-1);                                                         //
                                                                                    //
/* -------------------------------------------------------------------------------- */
 
namespace FFT {
    const static int maxn = 5e4 + 7;
    #define L(x) (1 << (x))
    double ax[maxn << 2], ay[maxn << 2], bx[maxn << 2], by[maxn << 2];//需要四倍空间
    int revv(int x, int bits) {
        int ret = 0;
        for (int i = 0; i < bits; i++) {
            ret <<= 1;
            ret |= x & 1;
            x >>= 1;
        }
        return ret;
    }
    void fft(double * a, double * b, int n, bool rev) {
        int bits = 0;
        while (1 << bits < n) ++bits;
        for (int i = 0; i < n; i++) {
            int j = revv(i, bits);
            if (i < j)
                swap(a[i], a[j]), swap(b[i], b[j]);
        }
        for (int len = 2; len <= n; len <<= 1) {
            int half = len >> 1;
            double wmx = cos(2 * PI / len), wmy = sin(2 * PI / len);
            if (rev) wmy = -wmy;
            for (int i = 0; i < n; i += len) {
                double wx = 1, wy = 0;
                for (int j = 0; j < half; j++) {
                    double cx = a[i + j], cy = b[i + j];
                    double dx = a[i + j + half], dy = b[i + j + half];
                    double ex = dx * wx - dy * wy, ey = dx * wy + dy * wx;
                    a[i + j] = cx + ex, b[i + j] = cy + ey;
                    a[i + j + half] = cx - ex, b[i + j + half] = cy - ey;
                    double wnx = wx * wmx - wy * wmy, wny = wx * wmy + wy * wmx;
                    wx = wnx, wy = wny;
                }
            }
        }
        if (rev) {
            for (int i = 0; i < n; i++)
                a[i] /= n, b[i] /= n;
        }
    }
    int solve(int a[], int na, int b[], int nb, int ans[]) {
        int len = max(na, nb), ln;
        for(ln = 0; L(ln) < len; ++ln);
        len = L(++ln);
        for (int i = 0; i < len ; ++i) {
            if (i >= na) ax[i] = 0, ay[i] = 0;
            else ax[i] = a[i], ay[i] = 0;
        }
        fft(ax, ay, len, 0);
        for (int i = 0; i < len; ++i) {
            if (i >= nb) bx[i] = 0, by[i] = 0;
            else bx[i] = b[i], by[i] = 0;
        }
        fft(bx, by, len, 0);
        for (int i = 0; i < len; ++i) {
            double cx = ax[i] * bx[i] - ay[i] * by[i];
            double cy = ax[i] * by[i] + ay[i] * bx[i];
            ax[i] = cx, ay[i] = cy;
        }
        fft(ax, ay, len, 1);
        for (int i = 0; i < len; ++i)
            ans[i] = (int)(ax[i] + 0.5);
        return len;
    }
    #undef L(x)
}
const int maxn = 5e4 + 7;
char s1[maxn], s2[maxn];
int x[maxn], y[maxn], ans[maxn << 2];
 
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
#endif // ONLINE_JUDGE
    while (~scanf("%s", s1)) {
        scanf("%s", s2);
        int len1 = strlen(s1), len2 = strlen(s2);
        for (int i = 0; i < len1; i ++) x[i] = s1[len1 - i - 1] - '0';
        for (int i = 0; i < len2; i ++) y[i] = s2[len2 - i - 1] - '0';
        fillchar(ans, 0);
        int len = FFT::solve(x, len1, y, len2, ans), i;
        for (i = 0; i < len || ans[i] >= 10; i ++) {
            ans[i + 1] += ans[i] / 10;
            ans[i] %= 10;
        }
        len = i;
        while (ans[len] <= 0 && len) len --;
        for (int i = len; i >= 0; i --) putchar(ans[i] + '0');
        puts("");
    }
    return 0;
}
/* ******************************************************************************** */
posted @ 2015-07-31 19:21  jklongint  阅读(381)  评论(0编辑  收藏  举报