[acdream_oj1732]求1到n的最小公倍数(n<=1e8)

题意:如标题

思路:如果n在10^6以内则可以用o(nlogn)的暴力,题目给定的是n<=1e8,暴力显然是不行的,考虑到1到n的最小公倍数可以写成2^p1*3^p2*5^p3*...这种素数的幂的乘积形式,对于当前询问n,可知质数x的指数为(int)log(x,n)(因为要满足是公倍数且最小),因为前n个数有n/logn个质数,这样一次处理为o(n/logn*logn) = o(n)的。由于有T组测试数据,直接T次处理肯定会超时,需要离线处理。具体怎么操作呢?首先将T个询问按n从小到大排序,从小到大处理时,每个质数的指数是非递减的,所以只需在上一次的答案上乘以若干质数。如果记录上一个询问后的每个质数的指数,然后遍历所有质数,看质数有没有增加,这样的时间复杂度为o(T*n/logn+n/logn*logn)=o(Tn/logn),跟直接T次在线处理没什么两样,原因是有很多的质数的指数并不会变化,却也被访问了一次。

一种解决办法是预先计算出每个询问n所增加的质数,从小到大枚举每个质数的每个幂,然后在T个询问中二分,得到第一次出现这个幂的n,这样时间复杂度为o(n/logn*logn*logT)=o(nlogT),查询时就相当于是只查了那个最大的n一样,所以查询复杂度为o(n),总复杂度为o(nlogT),虽然过不了此题,但这个思路却可以对付一些其他T比较大,n稍小的数据。

下面讲另一种o(Tsqrt(n)+n)的思路:核心思想是将质数分为两类,一类是小于等于sqrt(n),一类大于sqrt(n),不难发现对于第二类质数,它们的质数要么是1要么是0,也就是说,对于第二类质数,假设它在某个询问n时加进了答案,那么在以后的询问中就不用再考虑了(如果继续加进答案,那么它的指数会超过1),于是不难得到如下算法:对每个询问,枚举第一类质数,判断他们的质数有没有增加(实际操作时用试乘法而不是求一个对数),而第二类质数只需维护当前乘到了哪个质数就行了。下面是代码:

  1 #pragma comment(linker, "/STACK:10240000,10240000")
  2 
  3 #include <iostream>
  4 #include <cstdio>
  5 #include <algorithm>
  6 #include <cstdlib>
  7 #include <cstring>
  8 #include <map>
  9 #include <queue>
 10 #include <deque>
 11 #include <cmath>
 12 #include <vector>
 13 #include <ctime>
 14 #include <cctype>
 15 #include <set>
 16 #include <bitset>
 17 #include <functional>
 18 #include <numeric>
 19 #include <stdexcept>
 20 #include <utility>
 21 
 22 using namespace std;
 23 
 24 #define mem0(a) memset(a, 0, sizeof(a))
 25 #define mem_1(a) memset(a, -1, sizeof(a))
 26 #define lson l, m, rt << 1
 27 #define rson m + 1, r, rt << 1 | 1
 28 #define define_m int m = (l + r) >> 1
 29 #define rep_up0(a, b) for (int a = 0; a < (b); a++)
 30 #define rep_up1(a, b) for (int a = 1; a <= (b); a++)
 31 #define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)
 32 #define rep_down1(a, b) for (int a = b; a > 0; a--)
 33 #define all(a) (a).begin(), (a).end()
 34 #define lowbit(x) ((x) & (-(x)))
 35 #define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}
 36 #define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}
 37 #define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}
 38 #define pchr(a) putchar(a)
 39 #define pstr(a) printf("%s", a)
 40 #define sstr(a) scanf("%s", a)
 41 #define sint(a) scanf("%d", &a)
 42 #define sint2(a, b) scanf("%d%d", &a, &b)
 43 #define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)
 44 #define pint(a) printf("%d\n", a)
 45 #define test_print1(a) cout << "var1 = " << a << endl
 46 #define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl
 47 #define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl
 48 #define mp(a, b) make_pair(a, b)
 49 #define pb(a) push_back(a)
 50 
 51 typedef unsigned int uint;
 52 typedef long long LL;
 53 typedef pair<int, int> pii;
 54 typedef vector<int> vi;
 55 
 56 const int dx[8] = {0, 0, -1, 1, 1, 1, -1, -1};
 57 const int dy[8] = {-1, 1, 0, 0, 1, -1, 1, -1 };
 58 const int maxn = 1e8 + 17;
 59 const int md = 10007;
 60 const int inf = 1e9 + 7;
 61 const LL inf_L = 1e18 + 7;
 62 const double pi = acos(-1.0);
 63 const double eps = 1e-6;
 64 
 65 template<class T>T gcd(T a, T b){return b==0?a:gcd(b,a%b);}
 66 template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}
 67 template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}
 68 template<class T>T condition(bool f, T a, T b){return f?a:b;}
 69 template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}
 70 int make_id(int x, int y, int n) { return x * n + y; }
 71 
 72 int vis[8000000];
 73 unsigned int prime[6000000];
 74 
 75 int c;
 76 
 77 void init() {
 78     const int t = 1e8 + 13;
 79     for (int i = 2; i <= t; i ++) {
 80         int u = i >> 4, v = i & 15;
 81         if (vis[u] & (1 << v)) continue;
 82         prime[c ++] = i;
 83         if ((LL)i * i > t) continue;
 84         for (int j = i * i; j <= t; j += i) {
 85             int u = j >> 4, v = j & 15;
 86             vis[u] |= 1 << v;
 87         }
 88     }
 89 }
 90 
 91 
 92 pii node[10010];
 93 unsigned int out[10010];
 94 const int max_sq = 1e4;
 95 unsigned int last[10010];
 96 
 97 int main() {
 98     //freopen("in.txt", "r", stdin);
 99     int T, cas;
100     cin >> T;
101     cas = T;
102     init();
103     while (T --) {
104         int n;
105         sint(n);
106         node[cas - T - 1] = make_pair(n, cas - T - 1);
107     }
108     sort(node, node + cas);
109     unsigned int ans = 1;
110     int n = node[0].first;
111     int cur = 0;
112     for (int i = 0; prime[i] < max_sq; i ++) last[i] = 1;
113     rep_up0(i, cas) {
114         int n = node[i].first;
115         for (int j = 0; prime[j] < max_sq; j ++) {
116                 while ((LL)last[j] * prime[j] <= n) {
117                     last[j] *= prime[j];
118                     ans *= prime[j];
119                 }
120         }
121         while (prime[cur] <= n) {
122             cur ++;
123             if (prime[cur - 1] < max_sq) continue;
124             ans *= prime[cur - 1];
125         }
126         out[node[i].second] = ans;
127     }
128     rep_up0(i, cas) cout << out[i] << endl;
129     return 0;
130 }
View Code

 

11巨带我飞 
posted @ 2015-05-10 02:47  jklongint  阅读(1922)  评论(0编辑  收藏  举报