[codeforces525D]BFS
题目大意:
给定一个包含'.'和'*'的地图,每次操作可以把'*'->'.',用最少的操作使得新图满足条件:所有的连通块为矩形('.'为可达点)
解法:
用bfs来模拟操作的过程,对于一个2*2的块,如果只有一个‘*’,那么这个'*'是肯定要被变为'.',于是又可能影响这个点周围相邻的点,一开始把所有满足这个形式的点加入队列,考虑所有周围的点,如果有新的点满足这个形式,则加入队列。代码如下
1 #include <iostream> 2 #include <cstdio> 3 #include <algorithm> 4 #include <cstring> 5 #include <map> 6 #include <queue> 7 #include <cmath> 8 #include <vector> 9 #include <ctime> 10 #include <cctype> 11 12 using namespace std; 13 14 #define mem0(a) memset(a, 0, sizeof(a)) 15 #define lson l, m, rt << 1 16 #define rson m + 1, r, rt << 1 | 1 17 #define define_m int m = (l + r) >> 1 18 #define Rep(a, b) for(int a = 0; a < b; a++) 19 #define lowbit(x) ((x) & (-(x))) 20 #define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {} 21 #define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {} 22 #define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {} 23 24 typedef double db; 25 typedef long long LL; 26 typedef pair<int, int> pii; 27 28 const int dx[8] = {1, 0, -1, 0, 1, 1, -1, -1}; 29 const int dy[8] = {0, -1, 0, 1, -1, 1, 1, -1}; 30 const int maxn = 1e6 + 7; 31 const int maxm = 1e5 + 7; 32 const int MD = 1e9 +7; 33 const int INF = 1e9 + 7; 34 35 queue<pii> Q; 36 37 char s[2015][2015]; 38 39 int n, m; 40 41 bool ok(int x, int y) { 42 return x >= 0 && x < n && y >= 0 && y < m && s[x][y] == '.'; 43 } 44 45 bool chk(int x, int y) { 46 if (s[x][y] == '.') return false; 47 int d[] = {-1, 0, -1, 1, 0, 1, 1, 1, 1, 0, 1, -1, 0, -1, -1, -1, -1, 0}; 48 bool t[10]; 49 for (int i = 0; i < 18; i += 2) { 50 if (ok(x + d[i], y + d[i + 1])) { 51 t[i >> 1] = true; 52 } 53 else { 54 t[i >> 1] = false; 55 } 56 } 57 for (int i = 0; i < 8; i += 2) { 58 if (t[i] && t[i + 1] && t[i + 2]) { 59 return true; 60 } 61 } 62 return false; 63 } 64 65 int main() { 66 //freopen("in.txt", "r", stdin); 67 cin >> n >> m; 68 for (int i = 0; i < n; i++) { 69 scanf("%s", s[i]); 70 } 71 for (int i = 0; i < n; i++) { 72 for (int j = 0; j < m; j++) { 73 if (chk(i, j)) { 74 Q.push(make_pair(i, j)); 75 s[i][j] = '.'; 76 } 77 } 78 } 79 while (!Q.empty()) { 80 pii H = Q.front(); Q.pop(); 81 for (int i = 0; i < 8; i++) { 82 int xx = H.first + dx[i], yy = H.second + dy[i]; 83 if (chk(xx, yy)) { 84 Q.push(make_pair(xx, yy)); 85 s[xx][yy] = '.'; 86 } 87 } 88 } 89 for (int i = 0; i < n; i++) { 90 puts(s[i]); 91 } 92 return 0; 93 }