【HDU4990】递推式
题目大意:给定序列 1, 2, 5, 10, 21, 42, 85, 170, 341 …… 求第n项 模 m的结果
递推式 f[i] = f[i - 2] + 2 ^ (i - 1);
方法一: 构造矩阵, 求递推式
方法二: 直接推公式,递推式求和,得到 f[n] = [2 ^ (n + 1) - 1] / 3 奇数, f[n] = [2 ^ (n + 1) - 2] / 3 偶数; 其实还可以进一步化简, 注意到 2 ^ 2k % 3 = 1, 2 ^ (2k + 1) % 3 = 2,于是 f[n] = 2 ^ (n + 1) / 3 ;于是答案就是 2 ^ (n + 1) % 3m / 3 (巧妙)
源码(矩阵):
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #define mem0(a) memset(a, 0, sizeof(a)) 7 #define LL __int64 8 using namespace std; 9 struct Node{ 10 LL a[2][2]; 11 }; 12 Node multi(Node a, Node b, int m) 13 { 14 Node ans; 15 mem0(ans.a); 16 for(int i = 0; i < 2; i++) { 17 for(int j = 0; j < 2; j++) { 18 for(int k = 0; k < 2; k++) { 19 ans.a[i][j] += (a.a[i][k] * b.a[k][j]) % m; 20 } 21 } 22 } 23 return ans; 24 } 25 Node calc(Node a, int b, int m) 26 { 27 if(b == 1) return a; 28 Node tmp = calc(a, b >> 1, m); 29 int t = b & 1; 30 tmp = multi(tmp, tmp, m); 31 if(t) tmp = multi(tmp, a, m); 32 return tmp; 33 } 34 Node a0; 35 int main() 36 { 37 //freopen("in.txt", "r", stdin); 38 int n, m; 39 a0.a[0][0] = a0.a[1][0] = 1; 40 a0.a[0][1] = 0; 41 a0.a[1][1] = 4; 42 while(~scanf("%d%d", &n, &m)) { 43 LL ans = 0; 44 if(n == 1) { 45 cout<< 1 % m<< endl; 46 continue; 47 } 48 if(n == 2) { 49 cout<< 2 % m<< endl; 50 continue; 51 } 52 if(n & 1) { 53 Node one = calc(a0, (n - 1) >> 1, m); 54 ans = (one.a[0][0] + one.a[1][0] * 4) % m; 55 } 56 else { 57 Node one = calc(a0, (n - 2) >> 1, m); 58 ans = (one.a[0][0] * 2 + one.a[1][0] * 8) % m; 59 } 60 cout<< ans<< endl; 61 } 62 return 0; 63 }