数据结构之二叉树的遍历
二叉树的遍历分为前序遍历,中序遍历,后序遍历,层序遍历,在本文中,前三种由递归实现,层序遍历由队列实现。
#include "stdio.h"
#include "stdlib.h"
#include "windows.h"
typedef struct Node
{
char data;
struct Node *Left;
struct Node *Right;
struct Node *Next;
}BT;
typedef struct { /* 链队列结构 */
BT *rear; /* 指向队尾结点 */
BT *front; /* 指向队头结点 */
} LinkQueue;
//入队
LinkQueue* AddQuee(LinkQueue *PtrL,BT* item)
{
BT *node;
node=PtrL->rear;
if (PtrL->front==NULL)
{
BT *q=(BT*)malloc(sizeof(BT));
q->Left=item->Left;
q->Right=item->Right;
q->Next=NULL;
q->data=item->data;
PtrL->front=q;
PtrL->rear=q;
return PtrL;
}
else
{
BT *q=(BT*)malloc(sizeof(BT));
q->Next=NULL;
q->Left=item->Left;
q->Right=item->Right;
q->data=item->data;
node->Next=q;
PtrL->rear=q;
return PtrL;
}
}
//出队
BT* DeleteQ ( LinkQueue *PtrQ )
{
BT *firstNode;
//BT* NodeItem;
if (PtrQ->front==NULL)
{
printf("queue is empty");
return NULL;
}
firstNode=PtrQ->front;
if (PtrQ->front==PtrQ->rear)
{
PtrQ->front=PtrQ->rear=NULL;
}else
{
PtrQ->front=PtrQ->front->Next;
}
//NodeItem->data=firstNode->data;
//free(firstNode);
return firstNode;
}
//判断是否为空
int isempty(LinkQueue *PtrL)
{
if (PtrL->rear==NULL)
{
return 1;
}else
{
return 0;
}
}
BT *CreateBiTree()
{
char ch;
BT *T;
printf("please enter tree node:");
scanf("%c",&ch);
if (ch=='#')
{
T=NULL;
}else
{
T=(BT*)malloc(sizeof(BT));
T->data=ch;
T->Left=CreateBiTree();
T->Right=CreateBiTree();
}
return T;
}
//先序遍历
void PreOrderTraversal( BT* tree)
{
if (tree)
{
printf("%c ",tree->data);
PreOrderTraversal(tree->Left);
PreOrderTraversal(tree->Right);
}
}
//中序遍历
void InOrderTraversal(BT* tree)
{
if (tree)
{
PreOrderTraversal(tree->Left);
printf("%c ",tree->data);
PreOrderTraversal(tree->Right);
}
}
//后序遍历
void PostOderTraversal(BT *tree)
{
if (tree)
{
PostOderTraversal(tree->Left);
PostOderTraversal(tree->Right);
printf("%c ",tree->data);
}
}
//层序遍历
void LevelOrderTraversal(BT *tree)
{
BT *bt;
LinkQueue *q=(LinkQueue*)malloc(sizeof(LinkQueue));
q->front=NULL;
q->rear=NULL;
if (!tree)
{
return;
}
AddQuee(q,tree);
while(isempty(q)==0)
{
bt=DeleteQ(q);
printf("%c ",bt->data);
if (bt->Left) AddQuee(q,bt->Left);
if (bt->Right) AddQuee(q,bt->Right);
}
}
int PostOrderGetHeight( BT* tree )
{
int HL, HR, MaxH;
if( tree ) {
HL = PostOrderGetHeight(tree->Left); /*求左子树的深度*/
HR = PostOrderGetHeight(tree->Right); /*求右子树的深度*/
MaxH =(HL> HR)? HL : HR;/*取左右子树较大的深度*/
return ( MaxH + 1 ); /*返回树的深度*/
}
else return 0; /* 空树深度为0 */
}
void main()
{
BT *t;
int a;
t=CreateBiTree();
printf("\n1.PreOrderTraversal\n");
printf("2.MidOrderTraversal\n");
printf("3.PostOrderTraversal\n");
printf("4.EXIT\n");
printf("5.LevelOrderTraversal\n");
printf("6.show the hieght of the tree");
while (1)
{
printf("please enter your order:");
scanf("%d",&a);
switch (a)
{
case 1:
PreOrderTraversal(t);
break;
case 2:
InOrderTraversal(t);
break;
case 3:
PostOderTraversal(t);
break;
case 4:
exit(0);
break;
case 5:
LevelOrderTraversal(t);
break;
case 6:
printf("%d",PostOrderGetHeight(t));
break;
default:
break;
}
}
}
运行结果
C++实现二叉树的遍历
#include "iostream"
#include "stack"
#include "queue"
using namespace std;
//二叉树结点
typedef struct BiTNode{
//数据
char data;
//左右孩子指针
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
//按先序序列创建二叉树
int CreateBiTree(BiTree &T){
char data;
//按先序次序输入二叉树中结点的值(一个字符),‘#’表示空树
scanf("%c",&data);
if(data == '#'){
T = NULL;
}
else{
T = (BiTree)malloc(sizeof(BiTNode));
//生成根结点
T->data = data;
//构造左子树
CreateBiTree(T->lchild);
//构造右子树
CreateBiTree(T->rchild);
}
return 0;
}
//输出
void Visit(BiTree T){
if(T->data != '#'){
printf("%c ",T->data);
}
}
//先序遍历
void PreOrder(BiTree T){
if(T != NULL){
//访问根节点
Visit(T);
//访问左子结点
PreOrder(T->lchild);
//访问右子结点
PreOrder(T->rchild);
}
}
//中序遍历
void InOrder(BiTree T){
if(T != NULL){
//访问左子结点
InOrder(T->lchild);
//访问根节点
Visit(T);
//访问右子结点
InOrder(T->rchild);
}
}
//后序遍历
void PostOrder(BiTree T){
if(T != NULL){
//访问左子结点
PostOrder(T->lchild);
//访问右子结点
PostOrder(T->rchild);
//访问根节点
Visit(T);
}
}
/* 先序遍历(非递归)
思路:访问T->data后,将T入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T,出栈,再先序遍历T的右子树。
*/
void PreOrder2(BiTree T){
stack<BiTree> stack;
//p是遍历指针
BiTree p = T;
//栈不空或者p不空时循环
while(p || !stack.empty()){
if(p != NULL){
//存入栈中
stack.push(p);
//访问根节点
printf("%c ",p->data);
//遍历左子树
p = p->lchild;
}
else{
//退栈
p = stack.top();
stack.pop();
//访问右子树
p = p->rchild;
}
}//while
}
/* 中序遍历(非递归)
思路:T是要遍历树的根指针,中序遍历要求在遍历完左子树后,访问根,再遍历右子树。
先将T入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T,出栈,访问T->data,再中序遍历T的右子树。
*/
void InOrder2(BiTree T){
stack<BiTree> stack;
//p是遍历指针
BiTree p = T;
//栈不空或者p不空时循环
while(p || !stack.empty()){
if(p != NULL){
//存入栈中
stack.push(p);
//遍历左子树
p = p->lchild;
}
else{
//退栈,访问根节点
p = stack.top();
printf("%c ",p->data);
stack.pop();
//访问右子树
p = p->rchild;
}
}//while
}
//后序遍历(非递归)
typedef struct BiTNodePost{
BiTree biTree;
char tag;
}BiTNodePost,*BiTreePost;
void PostOrder2(BiTree T){
stack<BiTreePost> stack;
//p是遍历指针
BiTree p = T;
BiTreePost BT;
//栈不空或者p不空时循环
while(p != NULL || !stack.empty()){
//遍历左子树
while(p != NULL){
BT = (BiTreePost)malloc(sizeof(BiTNodePost));
BT->biTree = p;
//访问过左子树
BT->tag = 'L';
stack.push(BT);
p = p->lchild;
}
//左右子树访问完毕访问根节点
while(!stack.empty() && (stack.top())->tag == 'R'){
BT = stack.top();
//退栈
stack.pop();
BT->biTree;
printf("%c ",BT->biTree->data);
}
//遍历右子树
if(!stack.empty()){
BT = stack.top();
//访问过右子树
BT->tag = 'R';
p = BT->biTree;
p = p->rchild;
}
}//while
}
//层次遍历
void LevelOrder(BiTree T){
BiTree p = T;
//队列
queue<BiTree> queue;
//根节点入队
queue.push(p);
//队列不空循环
while(!queue.empty()){
//对头元素出队
p = queue.front();
//访问p指向的结点
printf("%c ",p->data);
//退出队列
queue.pop();
//左子树不空,将左子树入队
if(p->lchild != NULL){
queue.push(p->lchild);
}
//右子树不空,将右子树入队
if(p->rchild != NULL){
queue.push(p->rchild);
}
}
}
int main()
{
BiTree T;
CreateBiTree(T);
printf("先序遍历:\n");
PreOrder(T);
printf("\n");
printf("先序遍历(非递归):\n");
PreOrder2(T);
printf("\n");
printf("中序遍历:\n");
InOrder(T);
printf("\n");
printf("中序遍历(非递归):\n");
InOrder2(T);
printf("\n");
printf("后序遍历:\n");
PostOrder(T);
printf("\n");
printf("后序遍历(非递归):\n");
PostOrder2(T);
printf("\n");
printf("层次遍历:\n");
LevelOrder(T);
printf("\n");
system("pause");
return 0;
}