数据结构之图的实现
本文主要包括以下内容
- 邻接矩阵实现无向图
- 邻接表实现无向图
- 邻接矩阵实现有向图
- 邻接表实现有向图
图的理论基础,请参考:图的理论基础 - 如果天空不死 - 博客园
邻接矩阵实现无向图
MatrixUDG是邻接矩阵对应的结构体。
mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示”顶点i(即mVexs[i])”和”顶点j(即mVexs[j])”是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。
/**
* C++: 邻接矩阵表示的"无向图(List Undirected Graph)"
*
* @author skywang
* @date 2014/04/19
*/
#include <iomanip>
#include <iostream>
#include <vector>
using namespace std;
#define MAX 100
class MatrixUDG {
private:
char mVexs[MAX]; // 顶点集合
int mVexNum; // 顶点数
int mEdgNum; // 边数
int mMatrix[MAX][MAX]; // 邻接矩阵
public:
// 创建图(自己输入数据)
MatrixUDG();
// 创建图(用已提供的矩阵)
MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
~MatrixUDG();
// 打印矩阵队列图
void print();
private:
// 读取一个输入字符
char readChar();
// 返回ch在mMatrix矩阵中的位置
int getPosition(char ch);
};
/*
* 创建图(自己输入数据)
*/
MatrixUDG::MatrixUDG()
{
char c1, c2;
int i, p1, p2;
// 输入"顶点数"和"边数"
cout << "input vertex number: ";
cin >> mVexNum;
cout << "input edge number: ";
cin >> mEdgNum;
if ( mVexNum < 1 || mEdgNum < 1 || (mEdgNum > (mVexNum * (mVexNum-1))))
{
cout << "input error: invalid parameters!" << endl;
return ;
}
// 初始化"顶点"
for (i = 0; i < mVexNum; i++)
{
cout << "vertex(" << i << "): ";
mVexs[i] = readChar();
}
// 初始化"边"
for (i = 0; i < mEdgNum; i++)
{
// 读取边的起始顶点和结束顶点
cout << "edge(" << i << "): ";
c1 = readChar();
c2 = readChar();
p1 = getPosition(c1);
p2 = getPosition(c2);
if (p1==-1 || p2==-1)
{
cout << "input error: invalid edge!" << endl;
return ;
}
mMatrix[p1][p2] = 1;
mMatrix[p2][p1] = 1;
}
}
/*
* 创建图(用已提供的矩阵)
*
* 参数说明:
* vexs -- 顶点数组
* vlen -- 顶点数组的长度
* edges -- 边数组
* elen -- 边数组的长度
*/
MatrixUDG::MatrixUDG(char vexs[], int vlen, char edges[][2], int elen)
{
int i, p1, p2;
// 初始化"顶点数"和"边数"
mVexNum = vlen;
mEdgNum = elen;
// 初始化"顶点"
for (i = 0; i < mVexNum; i++)
mVexs[i] = vexs[i];
// 初始化"边"
for (i = 0; i < mEdgNum; i++)
{
// 读取边的起始顶点和结束顶点
p1 = getPosition(edges[i][0]);
p2 = getPosition(edges[i][1]);
mMatrix[p1][p2] = 1;
mMatrix[p2][p1] = 1;
}
}
/*
* 析构函数
*/
MatrixUDG::~MatrixUDG()
{
}
/*
* 返回ch在mMatrix矩阵中的位置
*/
int MatrixUDG::getPosition(char ch)
{
int i;
for(i=0; i<mVexNum; i++)
if(mVexs[i]==ch)
return i;
return -1;
}
/*
* 读取一个输入字符
*/
char MatrixUDG::readChar()
{
char ch;
do {
cin >> ch;
} while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));
return ch;
}
/*
* 打印矩阵队列图
*/
void MatrixUDG::print()
{
int i,j;
cout << "Martix Graph:" << endl;
for (i = 0; i < mVexNum; i++)
{
for (j = 0; j < mVexNum; j++)
cout << mMatrix[i][j] << " ";
cout << endl;
}
}
int main()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char edges[][2] = {
{'A', 'C'},
{'A', 'D'},
{'A', 'F'},
{'B', 'C'},
{'C', 'D'},
{'E', 'G'},
{'F', 'G'}};
int vlen = sizeof(vexs)/sizeof(vexs[0]);
int elen = sizeof(edges)/sizeof(edges[0]);
MatrixUDG* pG;
// 自定义"图"(输入矩阵队列)
//pG = new MatrixUDG();
// 采用已有的"图"
pG = new MatrixUDG(vexs, vlen, edges, elen);
pG->print(); // 打印图
return 0;
}
邻接表实现无向图
(01) ListUDG是邻接表对应的结构体。
mVexNum是顶点数,mEdgNum是边数;mVexs则是保存顶点信息的一维数组。
(02) VNode是邻接表顶点对应的结构体。
data是顶点所包含的数据,而firstEdge是该顶点所包含链表的表头指针。
(03) ENode是邻接表顶点所包含的链表的节点对应的结构体。
ivex是该节点所对应的顶点在vexs中的索引,而nextEdge是指向下一个节点的
/**
* C++: 邻接表表示的"无向图(List Undirected Graph)"
*
* @author skywang
* @date 2014/04/19
*/
#include <iomanip>
#include <iostream>
#include <vector>
using namespace std;
#define MAX 100
// 邻接表
class ListUDG
{
private: // 内部类
// 邻接表中表对应的链表的顶点
class ENode
{
public:
int ivex; // 该边所指向的顶点的位置
ENode *nextEdge; // 指向下一条弧的指针
};
// 邻接表中表的顶点
class VNode
{
public:
char data; // 顶点信息
ENode *firstEdge; // 指向第一条依附该顶点的弧
};
private: // 私有成员
int mVexNum; // 图的顶点的数目
int mEdgNum; // 图的边的数目
VNode mVexs[MAX];
public:
// 创建邻接表对应的图(自己输入)
ListUDG();
// 创建邻接表对应的图(用已提供的数据)
ListUDG(char vexs[], int vlen, char edges[][2], int elen);
~ListUDG();
// 打印邻接表图
void print();
private:
// 读取一个输入字符
char readChar();
// 返回ch的位置
int getPosition(char ch);
// 将node节点链接到list的最后
void linkLast(ENode *list, ENode *node);
};
/*
* 创建邻接表对应的图(自己输入)
*/
ListUDG::ListUDG()
{
char c1, c2;
int v, e;
int i, p1, p2;
ENode *node1, *node2;
// 输入"顶点数"和"边数"
cout << "input vertex number: ";
cin >> mVexNum;
cout << "input edge number: ";
cin >> mEdgNum;
if ( mVexNum < 1 || mEdgNum < 1 || (mEdgNum > (mVexNum * (mVexNum-1))))
{
cout << "input error: invalid parameters!" << endl;
return ;
}
// 初始化"邻接表"的顶点
for(i=0; i<mVexNum; i++)
{
cout << "vertex(" << i << "): ";
mVexs[i].data = readChar();
mVexs[i].firstEdge = NULL;
}
// 初始化"邻接表"的边
for(i=0; i<mEdgNum; i++)
{
// 读取边的起始顶点和结束顶点
cout << "edge(" << i << "): ";
c1 = readChar();
c2 = readChar();
p1 = getPosition(c1);
p2 = getPosition(c2);
// 初始化node1
node1 = new ENode();
node1->ivex = p2;
// 将node1链接到"p1所在链表的末尾"
if(mVexs[p1].firstEdge == NULL)
mVexs[p1].firstEdge = node1;
else
linkLast(mVexs[p1].firstEdge, node1);
// 初始化node2
node2 = new ENode();
node2->ivex = p1;
// 将node2链接到"p2所在链表的末尾"
if(mVexs[p2].firstEdge == NULL)
mVexs[p2].firstEdge = node2;
else
linkLast(mVexs[p2].firstEdge, node2);
}
}
/*
* 创建邻接表对应的图(用已提供的数据)
*/
ListUDG::ListUDG(char vexs[], int vlen, char edges[][2], int elen)
{
char c1, c2;
int i, p1, p2;
ENode *node1, *node2;
// 初始化"顶点数"和"边数"
mVexNum = vlen;
mEdgNum = elen;
// 初始化"邻接表"的顶点
for(i=0; i<mVexNum; i++)
{
mVexs[i].data = vexs[i];
mVexs[i].firstEdge = NULL;
}
// 初始化"邻接表"的边
for(i=0; i<mEdgNum; i++)
{
// 读取边的起始顶点和结束顶点
c1 = edges[i][0];
c2 = edges[i][1];
p1 = getPosition(c1);
p2 = getPosition(c2);
// 初始化node1
node1 = new ENode();
node1->ivex = p2;
// 将node1链接到"p1所在链表的末尾"
if(mVexs[p1].firstEdge == NULL)
mVexs[p1].firstEdge = node1;
else
linkLast(mVexs[p1].firstEdge, node1);
// 初始化node2
node2 = new ENode();
node2->ivex = p1;
// 将node2链接到"p2所在链表的末尾"
if(mVexs[p2].firstEdge == NULL)
mVexs[p2].firstEdge = node2;
else
linkLast(mVexs[p2].firstEdge, node2);
}
}
/*
* 析构函数
*/
ListUDG::~ListUDG()
{
}
/*
* 将node节点链接到list的最后
*/
void ListUDG::linkLast(ENode *list, ENode *node)
{
ENode *p = list;
while(p->nextEdge)
p = p->nextEdge;
p->nextEdge = node;
}
/*
* 返回ch的位置
*/
int ListUDG::getPosition(char ch)
{
int i;
for(i=0; i<mVexNum; i++)
if(mVexs[i].data==ch)
return i;
return -1;
}
/*
* 读取一个输入字符
*/
char ListUDG::readChar()
{
char ch;
do {
cin >> ch;
} while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));
return ch;
}
/*
* 打印邻接表图
*/
void ListUDG::print()
{
int i,j;
ENode *node;
cout << "List Graph:" << endl;
for (i = 0; i < mVexNum; i++)
{
cout << i << "(" << mVexs[i].data << "): ";
node = mVexs[i].firstEdge;
while (node != NULL)
{
cout << node->ivex << "(" << mVexs[node->ivex].data << ") ";
node = node->nextEdge;
}
cout << endl;
}
}
int main()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char edges[][2] = {
{'A', 'C'},
{'A', 'D'},
{'A', 'F'},
{'B', 'C'},
{'C', 'D'},
{'E', 'G'},
{'F', 'G'}};
int vlen = sizeof(vexs)/sizeof(vexs[0]);
int elen = sizeof(edges)/sizeof(edges[0]);
ListUDG* pG;
// 自定义"图"(输入矩阵队列)
//pG = new ListUDG();
// 采用已有的"图"
pG = new ListUDG(vexs, vlen, edges, elen);
pG->print(); // 打印图
return 0;
}
邻接矩阵实现有向图
MatrixDG是邻接矩阵有向图对应的结构体。
mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示”顶点i(即mVexs[i])”和”顶点j(即mVexs[j])”是邻接点,且顶点i是起点,顶点j是终点。
/**
* C++: 邻接矩阵图
*
* @author skywang
* @date 2014/04/19
*/
#include <iomanip>
#include <iostream>
#include <vector>
using namespace std;
#define MAX 100
class MatrixDG {
private:
char mVexs[MAX]; // 顶点集合
int mVexNum; // 顶点数
int mEdgNum; // 边数
int mMatrix[MAX][MAX]; // 邻接矩阵
public:
// 创建图(自己输入数据)
MatrixDG();
// 创建图(用已提供的矩阵)
MatrixDG(char vexs[], int vlen, char edges[][2], int elen);
~MatrixDG();
// 打印矩阵队列图
void print();
private:
// 读取一个输入字符
char readChar();
// 返回ch在mMatrix矩阵中的位置
int getPosition(char ch);
};
/*
* 创建图(自己输入数据)
*/
MatrixDG::MatrixDG()
{
char c1, c2;
int i, p1, p2;
// 输入"顶点数"和"边数"
cout << "input vertex number: ";
cin >> mVexNum;
cout << "input edge number: ";
cin >> mEdgNum;
if ( mVexNum < 1 || mEdgNum < 1 || (mEdgNum > (mVexNum * (mVexNum-1))))
{
cout << "input error: invalid parameters!" << endl;
return ;
}
// 初始化"顶点"
for (i = 0; i < mVexNum; i++)
{
cout << "vertex(" << i << "): ";
mVexs[i] = readChar();
}
// 初始化"边"
for (i = 0; i < mEdgNum; i++)
{
// 读取边的起始顶点和结束顶点
cout << "edge(" << i << "): ";
c1 = readChar();
c2 = readChar();
p1 = getPosition(c1);
p2 = getPosition(c2);
if (p1==-1 || p2==-1)
{
cout << "input error: invalid edge!" << endl;
return ;
}
mMatrix[p1][p2] = 1;
}
}
/*
* 创建图(用已提供的矩阵)
*
* 参数说明:
* vexs -- 顶点数组
* vlen -- 顶点数组的长度
* edges -- 边数组
* elen -- 边数组的长度
*/
MatrixDG::MatrixDG(char vexs[], int vlen, char edges[][2], int elen)
{
int i, p1, p2;
// 初始化"顶点数"和"边数"
mVexNum = vlen;
mEdgNum = elen;
// 初始化"顶点"
for (i = 0; i < mVexNum; i++)
mVexs[i] = vexs[i];
// 初始化"边"
for (i = 0; i < mEdgNum; i++)
{
// 读取边的起始顶点和结束顶点
p1 = getPosition(edges[i][0]);
p2 = getPosition(edges[i][1]);
mMatrix[p1][p2] = 1;
}
}
/*
* 析构函数
*/
MatrixDG::~MatrixDG()
{
}
/*
* 返回ch在mMatrix矩阵中的位置
*/
int MatrixDG::getPosition(char ch)
{
int i;
for(i=0; i<mVexNum; i++)
if(mVexs[i]==ch)
return i;
return -1;
}
/*
* 读取一个输入字符
*/
char MatrixDG::readChar()
{
char ch;
do {
cin >> ch;
} while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));
return ch;
}
/*
* 打印矩阵队列图
*/
void MatrixDG::print()
{
int i,j;
cout << "Martix Graph:" << endl;
for (i = 0; i < mVexNum; i++)
{
for (j = 0; j < mVexNum; j++)
cout << mMatrix[i][j] << " ";
cout << endl;
}
}
int main()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char edges[][2] = {
{'A', 'B'},
{'B', 'C'},
{'B', 'E'},
{'B', 'F'},
{'C', 'E'},
{'D', 'C'},
{'E', 'B'},
{'E', 'D'},
{'F', 'G'}};
int vlen = sizeof(vexs)/sizeof(vexs[0]);
int elen = sizeof(edges)/sizeof(edges[0]);
MatrixDG* pG;
// 自定义"图"(输入矩阵队列)
//pG = new MatrixDG();
// 采用已有的"图"
pG = new MatrixDG(vexs, vlen, edges, elen);
pG->print(); // 打印图
return 0;
}
邻接表实现有向图
(01) ListDG是邻接表对应的结构体。 mVexNum是顶点数,mEdgNum是边数;mVexs则是保存顶点信息的一维数组。
(02) VNode是邻接表顶点对应的结构体。 data是顶点所包含的数据,而firstEdge是该顶点所包含链表的表头指针。
(03) ENode是邻接表顶点所包含的链表的节点对应的结构体。 ivex是该节点所对应的顶点在vexs中的索引,而nextEdge是指向下一个节点的。
/**
* C++: 邻接表图
*
* @author skywang
* @date 2014/04/19
*/
#include <iomanip>
#include <iostream>
#include <vector>
using namespace std;
#define MAX 100
// 邻接表
class ListDG
{
private: // 内部类
// 邻接表中表对应的链表的顶点
class ENode
{
public:
int ivex; // 该边所指向的顶点的位置
ENode *nextEdge; // 指向下一条弧的指针
};
// 邻接表中表的顶点
class VNode
{
public:
char data; // 顶点信息
ENode *firstEdge; // 指向第一条依附该顶点的弧
};
private: // 私有成员
int mVexNum; // 图的顶点的数目
int mEdgNum; // 图的边的数目
VNode mVexs[MAX];
public:
// 创建邻接表对应的图(自己输入)
ListDG();
// 创建邻接表对应的图(用已提供的数据)
ListDG(char vexs[], int vlen, char edges[][2], int elen);
~ListDG();
// 打印邻接表图
void print();
private:
// 读取一个输入字符
char readChar();
// 返回ch的位置
int getPosition(char ch);
// 将node节点链接到list的最后
void linkLast(ENode *list, ENode *node);
};
/*
* 创建邻接表对应的图(自己输入)
*/
ListDG::ListDG()
{
char c1, c2;
int v, e;
int i, p1, p2;
ENode *node1, *node2;
// 输入"顶点数"和"边数"
cout << "input vertex number: ";
cin >> mVexNum;
cout << "input edge number: ";
cin >> mEdgNum;
if ( mVexNum < 1 || mEdgNum < 1 || (mEdgNum > (mVexNum * (mVexNum-1))))
{
cout << "input error: invalid parameters!" << endl;
return ;
}
// 初始化"邻接表"的顶点
for(i=0; i<mVexNum; i++)
{
cout << "vertex(" << i << "): ";
mVexs[i].data = readChar();
mVexs[i].firstEdge = NULL;
}
// 初始化"邻接表"的边
for(i=0; i<mEdgNum; i++)
{
// 读取边的起始顶点和结束顶点
cout << "edge(" << i << "): ";
c1 = readChar();
c2 = readChar();
p1 = getPosition(c1);
p2 = getPosition(c2);
// 初始化node1
node1 = new ENode();
node1->ivex = p2;
// 将node1链接到"p1所在链表的末尾"
if(mVexs[p1].firstEdge == NULL)
mVexs[p1].firstEdge = node1;
else
linkLast(mVexs[p1].firstEdge, node1);
}
}
/*
* 创建邻接表对应的图(用已提供的数据)
*/
ListDG::ListDG(char vexs[], int vlen, char edges[][2], int elen)
{
char c1, c2;
int i, p1, p2;
ENode *node1, *node2;
// 初始化"顶点数"和"边数"
mVexNum = vlen;
mEdgNum = elen;
// 初始化"邻接表"的顶点
for(i=0; i<mVexNum; i++)
{
mVexs[i].data = vexs[i];
mVexs[i].firstEdge = NULL;
}
// 初始化"邻接表"的边
for(i=0; i<mEdgNum; i++)
{
// 读取边的起始顶点和结束顶点
c1 = edges[i][0];
c2 = edges[i][1];
p1 = getPosition(c1);
p2 = getPosition(c2);
// 初始化node1
node1 = new ENode();
node1->ivex = p2;
// 将node1链接到"p1所在链表的末尾"
if(mVexs[p1].firstEdge == NULL)
mVexs[p1].firstEdge = node1;
else
linkLast(mVexs[p1].firstEdge, node1);
}
}
/*
* 析构函数
*/
ListDG::~ListDG()
{
}
/*
* 将node节点链接到list的最后
*/
void ListDG::linkLast(ENode *list, ENode *node)
{
ENode *p = list;
while(p->nextEdge)
p = p->nextEdge;
p->nextEdge = node;
}
/*
* 返回ch的位置
*/
int ListDG::getPosition(char ch)
{
int i;
for(i=0; i<mVexNum; i++)
if(mVexs[i].data==ch)
return i;
return -1;
}
/*
* 读取一个输入字符
*/
char ListDG::readChar()
{
char ch;
do {
cin >> ch;
} while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));
return ch;
}
/*
* 打印邻接表图
*/
void ListDG::print()
{
int i,j;
ENode *node;
cout << "List Graph:" << endl;
for (i = 0; i < mVexNum; i++)
{
cout << i << "(" << mVexs[i].data << "): ";
node = mVexs[i].firstEdge;
while (node != NULL)
{
cout << node->ivex << "(" << mVexs[node->ivex].data << ") ";
node = node->nextEdge;
}
cout << endl;
}
}
int main()
{
char vexs[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
char edges[][2] = {
{'A', 'B'},
{'B', 'C'},
{'B', 'E'},
{'B', 'F'},
{'C', 'E'},
{'D', 'C'},
{'E', 'B'},
{'E', 'D'},
{'F', 'G'}};
int vlen = sizeof(vexs)/sizeof(vexs[0]);
int elen = sizeof(edges)/sizeof(edges[0]);
ListDG* pG;
// 自定义"图"(输入矩阵队列)
//pG = new ListDG();
// 采用已有的"图"
pG = new ListDG(vexs, vlen, edges, elen);
pG->print(); // 打印图
return 0;
}