验证码识别

 

输入式验证码

Python的第三方库Tesserocr-OCR,准确率却非常受限制.如当图片背景有很多线条的时候,识别准确率是比较低的。

解决方法:

  对图片转灰度再进行二值化处理,以此提高识别率

  image = Image.open('./1.png')
  image.show()
  image = image.convert('L')
  threshold = 127
  table = []
  for i in range(256):
      if i < threshold:
          table.append(0)
      else:
          table.append(1)
  image = image.point(table,'1')
  image.show()
  result = tesserocr.image_to_text(image)
  print(result)

  但是这个办法也有限制.

  当背景纹理和字符的RGB都大于127,或者都小于127时(就是亮度接近时),准确率会很低。

  

  深度学习比较火,用深度学习训练个模型,这样的识别率就会高很多。

 

滑动式验证码

B站的登录界面:

解决思路:

  存三张图片,分别是完整的图、有缺口的图和缺口图。

  首先识别缺口在图中的位置,然后计算滑动的距离和轨迹。最后用selenium进行模拟操作。

from selenium import webdriver
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
from selenium.webdriver import ActionChains
from selenium.webdriver.common.keys import Keys
import time
import random
 
from PIL import Image
 
web='http://literallycanvas.com/'
 
#初始化
def init():
    #定义全局变量
    global url, browser, username, password, wait
    url = 'https://passport.bilibili.com/login'
    browser = webdriver.Chrome()
    username = '************'
    password = '************'
    wait = WebDriverWait(browser, 20)
    
#登录
def login():
    browser.get(url)
    user = wait.until(EC.presence_of_element_located((By.ID, 'login-username')))
    passwd = wait.until(EC.presence_of_element_located((By.ID, 'login-passwd')))
    user.send_keys(username)
    passwd.send_keys(password)
    #通过输入回车键模仿用户登录
    #passwd.send_keys(Keys.ENTER)
    login_btn=wait.until(EC.presence_of_element_located((By.CSS_SELECTOR,'a.btn.btn-login')))
    #随机延时点击
    time.sleep(random.random()*3)
    login_btn.click()
 
#设置元素的可见性用于截图
def show_element(element):
    browser.execute_script("arguments[0].style = arguments[1]", element, "display: block;")
def hide_element(element):
    browser.execute_script("arguments[0].style = arguments[1]", element, "display: none;")
 
#截图
def save_pic(obj, name):
    try:
        pic_url = browser.save_screenshot('.\\bilibili.png')
        #开始获取元素位置信息
        left = obj.location['x']
        top = obj.location['y']
        right = left + obj.size['width']
        bottom = top + obj.size['height']
        
        im = Image.open('.\\bilibili.png')
        im = im.crop((left, top, right, bottom))
        file_name = 'bili' + name + '.png'
        im.save(file_name)
    except BaseException as msg:
        print("截图失败:%s" % msg)
 
def cut():
    c_background = wait.until(EC.presence_of_element_located((By.CSS_SELECTOR, 'canvas.geetest_canvas_bg.geetest_absolute')))
    c_slice = wait.until(EC.presence_of_element_located((By.CSS_SELECTOR,'canvas.geetest_canvas_slice.geetest_absolute')))
    c_full_bg = wait.until(EC.presence_of_element_located((By.CSS_SELECTOR,'canvas.geetest_canvas_fullbg.geetest_fade.geetest_absolute')))
    hide_element(c_slice)
    save_pic(c_background, 'back')
    show_element(c_slice)
    save_pic(c_slice, 'slice')
    show_element(c_full_bg)
    save_pic(c_full_bg, 'full')
    
#判断元素是否相同
def is_pixel_equal(bg_image, fullbg_image, x, y):
    #bg_image是缺口的图片
    #fullbg_image是完整图片
    bg_pixel = bg_image.load()[x, y]
    fullbg_pixel = fullbg_image.load()[x, y]
    threshold = 60
    if (abs(bg_pixel[0] - fullbg_pixel[0] < threshold) and abs(bg_pixel[1] - fullbg_pixel[1] < threshold) and abs(bg_pixel[2] - fullbg_pixel[2] < threshold)):
        return True
    else:
        return False
    
#计算滑块移动的距离
def get_distance(bg_image, fullbg_image):
    distance = 57
    for i in range(distance, fullbg_image.size[0]):
        for j in range(fullbg_image.size[1]):
            if not is_pixel_equal(fullbg_image, bg_image, i, j):
                return i
 
#构造滑动轨迹
def get_trace(distance):
    #distance是缺口离滑块的距离
    trace = []
    faster_distance = distance*(4/5)
    start, v0, t = 0, 0, 0.2
    while start < distance:
        if start < faster_distance:
            a = 1.5
        else:
            a = -3
        move = v0 * t + 1 / 2 * a * t * t
        v = v0 + a * t
        v0 = v
        start += move
        trace.append(round(move))
    return trace
 
#模拟拖动
def move_to_gap(trace):
    slider=wait.until(EC.presence_of_element_located((By.CSS_SELECTOR,'div.geetest_slider_button')))
    # 使用click_and_hold()方法悬停在滑块上,perform()方法用于执行
    ActionChains(browser).click_and_hold(slider).perform()
    for x in trace:
        # 使用move_by_offset()方法拖动滑块,perform()方法用于执行
        ActionChains(browser).move_by_offset(xoffset=x, yoffset=0).perform()
    time.sleep(0.5)
    ActionChains(browser).release().perform()
    
def slide():
    distance=get_distance(Image.open('.\\bili_back.png'),Image.open('.\\bili_full.png'))
    trace = get_trace(distance-5)
    move_to_gap(trace)
    time.sleep(3)
 
init()
login()
cut()
slide()

 

点击式的图文验证和图标选择

常见的点击式验证码有12306、简书.

简书的解决思路:

  获取点击式图片的信息——调用第三方识别库——获取第三方返回的坐标——用selenium模拟用户点击。

  (第三方识别是超级鹰,这是一个付费的软件,但是注册后关注公众号有免费的测试额度)

import time
 
from PIL import Image
from  selenium import webdriver
from selenium.webdriver import ActionChains
 
 
def crack():
 
    # 保存网页截图
    browser.save_screenshot('222.jpg')
 
    # 获取 验证码确定按钮
    button = browser.find_element_by_xpath(xpath='//div[@class="geetest_panel"]/a/div')
 
    #  获取 验证码图片的 位置信息
    img1 = browser.find_element_by_xpath(xpath='//div[@class="geetest_widget"]')
    location = img1.location
    size = img1.size
    top, bottom, left, right = location['y'], location['y'] + size['height'], location['x'], location['x'] + size[
        'width']
    print('图片的宽:', img1.size['width'])
    print(top, bottom, left, right)
 
    #  根据获取的验证码位置信息和网页图片  对验证码图片进行裁剪 保存
    img_1 = Image.open('222.jpg')
    capcha1 = img_1.crop((left, top, right, bottom-54))
    capcha1.save('tu1-1.png')
 
    # 接入超级鹰 API 获取图片中的一些参数 (返回的是一个字典)
    cjy = Chaojiying('*********', '************', '900751')
    im = open('tu1-1.png', 'rb').read()
    content = cjy.post_pic(im, 9004)
    print(content)
    #  将图片中汉字的坐标位置 提取出来
    positions = content.get('pic_str').split('|')
    locations = [[int(number)for number in group.split(",")] for group in positions]
    print(positions)
    print(locations)
 
    #  根据获取的坐标信息 模仿鼠标点击验证码图片
    for location1 in locations:
        print(location1)
        ActionChains(browser).move_to_element_with_offset(img1 , location1[0],location1[1]).click().perform()
        time.sleep(1)
    button.click()
    time.sleep(1)
    # 失败后重试
    lower = browser.find_element_by_xpath('//div[@class="geetest_table_box"]/div[2]').text
    print('判断', lower)
    if  lower != '验证失败 请按提示重新操作'and lower != None:
        print('登录成功')
        time.sleep(3)
    else:
        time.sleep(3)
        print('登录失败')
        # 登录失败后 , 调用 该函数 , 后台 则对该次判断不做扣分处理
        pic_id = content.get('pic_id')
        print('图片id为:',pic_id)
        cjy = Chaojiying('********', '**********', '900751')
        cjy.report_error(pic_id)
        crack()
 
if __name__ == '__main__':
    patn = 'chromedriver.exe'
    browser = webdriver.Chrome(patn)
 
    browser.get('https://www.jianshu.com/sign_in')
    browser.save_screenshot('lodin.png')
 
    # 填写from表单 点击登陆  获取验证码 的网页截图
    login = browser.find_element_by_id('sign-in-form-submit-btn')
    username = browser.find_element_by_id('session_email_or_mobile_number')
    password = browser.find_element_by_id('session_password')
    username.send_keys('***********')
    password.send_keys('***********')
    login.click()
    time.sleep(5)
    crack()
selenium

 

import requests
from hashlib import md5
 
 
class Chaojiying(object):
 
    def __init__(self, username, password, soft_id):
        self.username = username
        self.password = md5(password.encode('utf-8')).hexdigest()
        self.soft_id = soft_id
        self.base_params = {
            'user': self.username,
            'pass2': self.password,
            'softid': self.soft_id,
        }
        self.headers = {
            'Connection': 'Keep-Alive',
            'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
        }
 
    def post_pic(self, im, codetype):
        """
        im: 图片字节
        codetype: 题目类型 参考 http://www.chaojiying.com/price.html
        """
        params = {
            'codetype': codetype,
        }
        params.update(self.base_params)
        files = {'userfile': ('ccc.jpg', im)}
        r = requests.post('http://upload.chaojiying.net/Upload/Processing.php', data=params, files=files,
                          headers=self.headers)
        return r.json()
 
    #  验证不通过,请求该函数 , 后台 则对该次判断不做扣分处理
    def report_error(self, im_id):
        """
        im_id:报错题目的图片ID
        """
        params = {
            'id': im_id,
        }
        params.update(self.base_params)
        r = requests.post('http://upload.chaojiying.net/Upload/ReportError.php', data=params, headers=self.headers)
        return r.json()
API超级鹰

 

 

宫格验证码

 

原文链接:https://blog.csdn.net/m0_37872090/article/details/97392185

posted @ 2019-08-18 11:28  JamJarBranch  阅读(259)  评论(0编辑  收藏  举报