flink02------1.自定义source 2. StreamingSink 3 Time 4窗口 5 watermark

1.自定义sink

  在flink中,sink负责最终数据的输出。使用DataStream实例中的addSink方法,传入自定义的sink类

定义一个printSink(),使得其打印显示的是真正的task号(默认的情况是task的id+1)

MyPrintSink

package cn._51doit.flink.day02;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;

public class MyPrintSink<T> extends RichSinkFunction<T> {

    @Override
    public void invoke(T value, Context context) throws Exception {

        int index = getRuntimeContext().getIndexOfThisSubtask();

        System.out.println(index + " > " + value);
    }
}
View Code

MyPrintSinkDemo

package cn._51doit.flink.day02;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.core.fs.FileSystem;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class MyPrintSinkDemo {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);
        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = lines.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                String[] words = value.split(" ");
                for (String word : words) {
                    out.collect(Tuple2.of(word, 1));
                }
            }
        });
        SingleOutputStreamOperator<Tuple2<String, Integer>> res = wordAndOne.keyBy(0).sum(1);

        res.addSink(new MyPrintSink<>());

        env.execute();
    }
}
View Code

 

2. StreamingSink

 用的比较多,可以将结果输出到本地或者hdfs中去,并且支持exactly once

package cn._51doit.flink.day02;


import akka.remote.WireFormats;
import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink;
import org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy;

import java.util.concurrent.TimeUnit;

public class StreamFileSinkDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);
        SingleOutputStreamOperator<String> upper = lines.map(String::toUpperCase);
        String path = "E:\\flink";

        env.enableCheckpointing(10000);

        StreamingFileSink<String> sink = StreamingFileSink
                .forRowFormat(new Path(path), new SimpleStringEncoder<String>("UTF-8"))
                .withRollingPolicy(
                        DefaultRollingPolicy.builder()
                                // 滚动生成文件的最长时间
                                .withRolloverInterval(TimeUnit.SECONDS.toMillis(30)) 
                                // 间隔多长时间没写文件,则文件滚动
                                .withInactivityInterval(TimeUnit.SECONDS.toMillis(10))
                                // 文件大小超过1m,则滚动
                                .withMaxPartSize(1024 * 1024 * 1024)
                                .build())
                .build();
        upper.addSink(sink);
        env.execute();

    }
}
View Code

 

3. Time

 

 

 

(1)Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,flink通过时间戳分配器访问事件时间戳

(2)Ingestion:数据进入Flink的时间

(3)Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time

4. Window(窗口)

Window可以分成两类:

(1)GlobalWindow(countWindow)按照指定的数据条数生成一个window,与时间无关。

(2)TimeWindow:按照时间生成Window

  对于TimeWindow,可以根据窗口实现原理的不同分为三类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)和会话窗口(Session Window)。

4.1 countWindow/countWindowAll

  countWindow根据窗口中相同key元素的数量来触发执行,执行时只计算元素数量达到窗口大小的key对应的结果

(1)滚动窗口:默认就是滚动窗口

  • 未分组的情况:使用countWindowAll,输入的总数超过窗口的大小就会触发窗口
package cn._51doit.flink.day02.window;

import org.apache.flink.streaming.api.datastream.AllWindowedStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.windows.GlobalWindow;

public class CountWindowAllDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<String> lines = env.socketTextStream("feng05", 8888);
        SingleOutputStreamOperator<Integer> nums = lines.map(Integer::parseInt);
        // 传入窗口分配器(划分器),传入具体划分窗口规则
        AllWindowedStream<Integer, GlobalWindow> window = nums.countWindowAll(3);
        SingleOutputStreamOperator<Integer> result = window.sum(0);
        result.print();
        env.execute();
    }
}
View Code
  • keyBy分组后,使用countWindow,输入数的每个分组的数超过窗口的大小就会触发窗口
package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.windows.GlobalWindow;

public class CountWindowDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<String> lines = env.socketTextStream("feng05", 8888);
        // 划分窗口,若是调用了keyBy分组,调用window
        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = lines.map(new MapFunction<String, Tuple2<String, Integer>>() {

            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                return Tuple2.of(value, 1);
            }
        });
        // 按照key进行分组
        KeyedStream<Tuple2<String, Integer>, Tuple> keyed = wordAndOne.keyBy(0);
        // 对KeyedStream划分窗口
        WindowedStream<Tuple2<String, Integer>, Tuple, GlobalWindow> window = keyed.countWindow(5);
        SingleOutputStreamOperator<Tuple2<String, Integer>> sumed = window.sum(1);
        sumed.print();
        env.execute();

    }
}
View Code

 

(2)滑动窗口

  • 未分组的情况 与(1)相似,只是窗口分配的规则发生变化,变化的代码如下
AllWindowedStream<Integer, GlobalWindow> window = nums.countWindowAll(3,2);

运算结果

 

 

  •  同理分组的情况

 

4.2 TimeWindow

  TimeWindow是将指定时间范围内的所有数据组成一个window,一次对一个window里面的所有数据进行计算

4.2.1 Processing Time

(1)滚动窗口

  Flink默认的时间窗口根据Processing Time进行窗口的划分,将Flink获取到的数据进入Flink的时间划分到不同的窗口中

  • 未分组

ProcessingTumblingWindowAllDemo

package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.*;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class ProcessingTumblingWindowAllDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = lines.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                return Tuple2.of(value, 1);
            }
        });
        //如果是划分窗口,未分组,调用window
        AllWindowedStream<Tuple2<String, Integer>, TimeWindow> window = wordAndOne.windowAll(TumblingProcessingTimeWindows.of(Time.seconds(5)));
        SingleOutputStreamOperator<Tuple2<String, Integer>> sum = window.sum(1);
        sum.print();
        env.execute();
    }
}
View Code
wordAndOne.windowAll(TumblingProcessingTimeWindows.of(Time.seconds(5)))

表示processingTime每5秒划分一个窗口

  • 分组

  同理

(2)滑动窗口

  滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size

ProcessingSlidingWindowAllDemo

package cn._51doit.flink.day02.window;

import org.apache.flink.streaming.api.datastream.AllWindowedStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class ProcessingSlidingWindowAllDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

        //如果是划分窗口,如果没有调用keyBy分组(Non-Keyed Stream),调用windowAll
        SingleOutputStreamOperator<Integer> nums = lines.map(Integer::parseInt);

        //划分滚动窗口
        AllWindowedStream<Integer, TimeWindow> window = nums.windowAll(SlidingProcessingTimeWindows.of(Time.seconds(20), Time.seconds(10)));

        SingleOutputStreamOperator<Integer> sum = window.sum(0);

        sum.print();

        env.execute();
    }
}
View Code

ProcessingSlidingWindowDemo

package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class ProcessingSlidingWindowDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = lines.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                return Tuple2.of(value, 1);
            }
        });

        KeyedStream<Tuple2<String, Integer>, Tuple> keyed = wordAndOne.keyBy(0);

        //如果是划分窗口,如果调用keyBy分组(Keyed Stream),调用window
        WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> window = keyed.window(SlidingProcessingTimeWindows.of(Time.seconds(20), Time.seconds(10)));

        SingleOutputStreamOperator<Tuple2<String, Integer>> sum = window.sum(1);
        sum.print();
        env.execute();
    }
}
View Code

(3)会话窗口

  由一系列列事件组合一个指定时间长度的timeout间隙组成,类似于web应用的session,也就是一段时间没有接收到新数据就会⽣生成新的窗口。

ProcessingSessionWindowAllDemo

package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.AllWindowedStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.ProcessingTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class ProcessingSessionWindowAllDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<String> lines = env.socketTextStream("feng05", 8888);
        // 不分组,调用windowAll
        SingleOutputStreamOperator<Integer> nums = lines.map(Integer::parseInt);
        // 划分滚动窗口
        AllWindowedStream<Integer, TimeWindow> window = nums.windowAll(ProcessingTimeSessionWindows.withGap(Time.seconds(5)));
        SingleOutputStreamOperator<Integer> sum = window.sum(0);
        sum.print();
        env.execute();
    }
}
View Code

此处程序5秒没收到数据,就会触发一个新的窗口

ProcessingSessionWindowDemo

package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.ProcessingTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class ProcessingSessionWindowDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = lines.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                return Tuple2.of(value, 1);
            }
        });

        KeyedStream<Tuple2<String, Integer>, Tuple> keyed = wordAndOne.keyBy(0);

        //如果是划分窗口,如果调用keyBy分组(Keyed Stream),调用window
        WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> window = keyed
                .window(ProcessingTimeSessionWindows.withGap(Time.seconds(5)));

        SingleOutputStreamOperator<Tuple2<String, Integer>> sum = window.sum(1);
        sum.print();
        env.execute();
    }
}
View Code

 

4.2.2 Event Time

 原理同上,只是划分窗口的时间变成事件产生时的时间。另外,由于Flink默认使用ProcessingTime作为时间标准,所以需要设置EventTime作为时间标准

env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //设置EventTime作为时间标准

 

(1)滚动窗口

EventTimeTumblingWindowAllDemo
package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.AllWindowedStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

public class EventTimeTumblingWindowAllDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //Flink默认使用ProcessingTime作为时间标准
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //设置EventTime作为时间标准
        //需要将时间转成Timestamp格式
        //2020-03-01 00:00:00,1
        //2020-03-01 00:00:04,2
        //2020-03-01 00:00:05,3
        DataStreamSource<String> lines = env.socketTextStream("feng05", 8888);
        //提取数据中的EventTime
        SingleOutputStreamOperator<String> dataStreamWithWaterMark = lines.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<String>(Time.seconds(0)) {
            private SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
            @Override
            public long extractTimestamp(String element) {
                String[] fields = element.split(",");
                String dateStr = fields[0];
                try {
                    Date date = sdf.parse(dateStr);
                    long timestamp = date.getTime();
                    return timestamp;
                } catch (ParseException e) {
                    throw new RuntimeException("时间转换异常");
                }
            }
        });
        dataStreamWithWaterMark.print();
        SingleOutputStreamOperator<Integer> nums = dataStreamWithWaterMark.map(new MapFunction<String, Integer>() {
            @Override
            public Integer map(String value) throws Exception {
                String[] fields = value.split(",");
                String numStr = fields[1];
                return Integer.parseInt(numStr);

            }
        });
        nums.print();

        //如果是划分窗口,如果没有调用keyBy分组(Non-Keyed Stream),调用windowAll
        AllWindowedStream<Integer, TimeWindow> window = nums
                .windowAll(TumblingEventTimeWindows.of(Time.seconds(5)));

        SingleOutputStreamOperator<Integer> sum = window.sum(0);
        sum.print();
        env.execute();
    }
}
View Code

注意点:

EventTimeTumblingWindowDemo
package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.*;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class EventTimeTumblingWindowDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //Flink默认使用ProcessingTime作为时间标准
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //设置EventTime作为时间标准

        //需要将时间转成Timestamp格式
        //1000,a
        //3000,b
        //4000,c
        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

        //提取数据中的EventTime字段,并且转换成Timestamp格式
        SingleOutputStreamOperator<String> dataStreamWithWaterMark = lines.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<String>(Time.seconds(2)) {
            @Override
            public long extractTimestamp(String element) {
                String[] fields = element.split(",");
                return Long.parseLong(fields[0]);
            }
        });

        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = dataStreamWithWaterMark.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                String[] fields = value.split(",");
                String word = fields[1];
                return Tuple2.of(word, 1);
            }
        });

        KeyedStream<Tuple2<String, Integer>, Tuple> keyed = wordAndOne.keyBy(0);

        WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> window = keyed.window(TumblingEventTimeWindows.of(Time.seconds(5)));

        SingleOutputStreamOperator<Tuple2<String, Integer>> res = window.sum(1);

        res.print();

        env.execute();
    }
}
View Code

(2)滑动窗口

EventTimeSlidingWindowAllDemo

package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.AllWindowedStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class EventTimeSlidingWindowAllDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //Flink默认使用ProcessingTime作为时间标准
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //设置EventTime作为时间标准

        //需要将时间转成Timestamp格式
        //1000,1
        //2000,2
        //3000,3
        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

        //提取数据中的EventTime字段,并且转换成Timestamp格式
        SingleOutputStreamOperator<String> dataStreamWithWaterMark = lines.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<String>(Time.seconds(0)) {
            @Override
            public long extractTimestamp(String element) {
                String[] fields = element.split(",");
                return Long.parseLong(fields[0]);
            }
        });

        SingleOutputStreamOperator<Integer> nums = dataStreamWithWaterMark.map(new MapFunction<String, Integer>() {
            @Override
            public Integer map(String value) throws Exception {
                String[] fields = value.split(",");
                String numStr = fields[1];
                return Integer.parseInt(numStr);
            }
        });

        //如果是划分窗口,如果没有调用keyBy分组(Non-Keyed Stream),调用windowAll
        //Non-Keyed Stream 调用完windowAll 返回的是Non-Keyed Window(AllWindowed)
        AllWindowedStream<Integer, TimeWindow> window = nums
                .windowAll(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)));

        SingleOutputStreamOperator<Integer> sum = window.sum(0);
        sum.print();
        env.execute();
    }
}
View Code

EventTimeSlidingWindowDemo

package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class EventTimeSlidingWindowDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //Flink默认使用ProcessingTime作为时间标准
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //设置EventTime作为时间标准

        //需要将时间转成Timestamp格式
        //1000,a
        //3000,b
        //4000,c
        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

        //提取数据中的EventTime字段,并且转换成Timestamp格式
        SingleOutputStreamOperator<String> dataStreamWithWaterMark = lines.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<String>(Time.seconds(0)) {
            @Override
            public long extractTimestamp(String element) {
                String[] fields = element.split(",");
                return Long.parseLong(fields[0]);
            }
        });

        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = dataStreamWithWaterMark.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                String[] fields = value.split(",");
                String word = fields[1];
                return Tuple2.of(word, 1);
            }
        });

        KeyedStream<Tuple2<String, Integer>, Tuple> keyed = wordAndOne.keyBy(0);

        WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> window = keyed.window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)));

        SingleOutputStreamOperator<Tuple2<String, Integer>> res = window.sum(1);

        res.print();

        env.execute();
    }
}
View Code

(3)会话窗口

EventTimeSessionWindowAllDemo

package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.AllWindowedStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.EventTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class EventTimeSessionWindowAllDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //Flink默认使用ProcessingTime作为时间标准
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //设置EventTime作为时间标准

        //需要将时间转成Timestamp格式
        //1000,1
        //2000,2
        //3000,3
        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

        //提取数据中的EventTime字段,并且转换成Timestamp格式
        SingleOutputStreamOperator<String> dataStreamWithWaterMark = lines.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<String>(Time.seconds(0)) {
            @Override
            public long extractTimestamp(String element) {
                String[] fields = element.split(",");
                return Long.parseLong(fields[0]);
            }
        });

        SingleOutputStreamOperator<Integer> nums = dataStreamWithWaterMark.map(new MapFunction<String, Integer>() {
            @Override
            public Integer map(String value) throws Exception {
                String[] fields = value.split(",");
                String numStr = fields[1];
                return Integer.parseInt(numStr);
            }
        });

        //如果是划分窗口,如果没有调用keyBy分组(Non-Keyed Stream),调用windowAll
        //Non-Keyed Stream 调用完windowAll 返回的是Non-Keyed Window(AllWindowed)
        AllWindowedStream<Integer, TimeWindow> window = nums
                .windowAll(EventTimeSessionWindows.withGap(Time.seconds(5)));

        SingleOutputStreamOperator<Integer> sum = window.sum(0);
        sum.print();
        env.execute();
    }
}
View Code

EventTimeSessionWindowDemo

package cn._51doit.flink.day02.window;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.windowing.assigners.EventTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class EventTimeSessionWindowDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //Flink默认使用ProcessingTime作为时间标准
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); //设置EventTime作为时间标准

        //需要将时间转成Timestamp格式
        //1000,a
        //3000,b
        //4000,c
        DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

        //提取数据中的EventTime字段,并且转换成Timestamp格式
        SingleOutputStreamOperator<String> dataStreamWithWaterMark = lines.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<String>(Time.seconds(0)) {
            @Override
            public long extractTimestamp(String element) {
                String[] fields = element.split(",");
                return Long.parseLong(fields[0]);
            }
        });

        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = dataStreamWithWaterMark.map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                String[] fields = value.split(",");
                String word = fields[1];
                return Tuple2.of(word, 1);
            }
        });

        KeyedStream<Tuple2<String, Integer>, Tuple> keyed = wordAndOne.keyBy(0);

        WindowedStream<Tuple2<String, Integer>, Tuple, TimeWindow> window = keyed
                .window(EventTimeSessionWindows.withGap(Time.seconds(5)));

        SingleOutputStreamOperator<Tuple2<String, Integer>> res = window.sum(1);

        res.print();

        env.execute();
    }
}
View Code

 

5 Watermark(水位线)

  我们知道,流处理理从事件产生,到流经source,再到operator,中间是有一个过程和时间的,虽然大部分情况下,流到operator的数据都是按照事件产?生的时间顺序来的,但是也不不排除由于网络、背压等原因,导致乱序的产生,所谓乱序,就是指Flink接收到的事件的先后顺序不不是严格按照事件的Event Time顺序排列列的。

 

  那么此时出现一个问题,一旦出现乱序,如果只根据eventTime决定window的运行,我们不能明确数据是否全部到位,但又不能无限期的等下去,此时必须要有个机制来保证一个特定的时间后,必须触发window去进行计算了,这个特别的机制,就是Watermark。

 

   Watermark是用于处理乱序事件的,而正确的处理从乱序事件,通常用Watermark机制结合window来实现。

  数据流中的Watermark用于表示timestamp小于Watermark的数据,都已经到达了,因此,window的执行也是由Watermark触发的。

  Watermark可以理解成一个延迟触发机制,我们可以设置Watermark的延时时长t,每次系统会校验已经到达的数据中最大的maxEventTime,然后认定eventTime小于maxEventTime-t的所有数据都已经到达,如果有窗口的停止时间等于maxEventTime – t,那么这个窗口被触发执行。

 

 下面便是创建了一个watermark

SingleOutputStreamOperator<String> dataStreamWithWaterMark = lines.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<String>(Time.seconds(0)) { //延迟时间0秒
            private SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
            @Override
            public long extractTimestamp(String element) {
                String[] fields = element.split(",");
                String dateStr = fields[0];
                try {
                    Date date = sdf.parse(dateStr);
                    long timestamp = date.getTime();
                    return timestamp;
                } catch (ParseException e) {
                    throw new RuntimeException("时间转换异常");
                }
            }
        });

 

BoundedOutOfOrdernessTimestampExtractor<String>(Time.seconds(0)),此种的参数即为延迟时间

窗口的尺寸是左闭右开,比如一个长度为5s的窗口,其范围为[0,4999)

 

posted @ 2020-06-16 22:45  一y样  阅读(367)  评论(0编辑  收藏  举报