Machine Learning --- GMM & QDA\LDA & EM algorithm
摘要:
一、单高斯模型GSM(多元正态分布MVN) 当特征为2D时: 马氏距离=翻转坐标系下的欧式距离: 高斯分布证明(极大熵): [例]拉格朗日乘子法对q求导: 服从指数分布族: 证毕。 二、高斯混合模型GMM(多个单高斯的线性叠加,可逼近任意分布,每个高斯是一个聚类中心) 目标求三个参数: (1)当样本类别已知时(简单问题):经验公式求... 阅读全文
posted @ 2013-11-16 22:53 Jizhiyuan 阅读(1726) 评论(0) 推荐(0) 编辑