所以燃

Machine Learning --- Structure risk & VC dimension

一、结构风险

结构风险=经验风险+置信风险

经验风险=分类器的训练误差

置信风险=分类器的测试误差

其中置信风险由样本数量N与分类函数的VC维h决定。样本数量越多模型越接近真实分布,置信风险越小;VC维越大,模型越复杂推广性差,置信风险越大。结构风险公式如下:

image

 

二、VC维

定义:若h个样本能被分类函数按所有可能的2h种形式分开,则称分类函数能把h个样本打散。分类函数的VC为就是它能打散的最大样本数h。若分类边界为线性,则h=D+1,D为特征维数。

[例]2维平面内只能找到3个点被直线打散分成两堆。设A、B、C表示三个点,+1,-1表示堆的类别。

当h=3时,有8种打散方式:

image

当h=4时,只有14种打散方式(应该有24=16种)

image image image

因此VC维等于3。

posted on 2013-11-16 16:57  Jizhiyuan  阅读(356)  评论(0编辑  收藏  举报

导航