scikit-learn中的机器学习算法封装(以kNN为例)

一、使用scikit-learn中的kNN

注意:predict传入的参数需为矩阵

二、自建py文件实现

import numpy as np
from math import sqrt
from collections import Counter

class KNNClassifier:
    def __init__(self, k):
        """初始化kNN分类器"""
        assert k >= 1, "k must be valid"
        self.k = k
        self._X_train = None
        self._y_train = None

    def fit(self, X_train, y_train):
        """根据训练数据集X_train和y_train训练kNN分类器"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"
        assert self.k <= X_train.shape[0], \
            "the size of X_train must be at least k."

        self._X_train = X_train
        self._y_train = y_train
        return self

    def predict(self, X_predict):
        """给定待预测数据集X_predict,返回表示X_predict的结果向量"""
        assert self._X_train is not None and self._y_train is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == self._X_train.shape[1], \
            "the feature number of X_predict must be equal to X_train"

        y_predict = [self._predict(x) for x in X_predict]
        return np.array(y_predict)

    def _predict(self, x):
        """给定单个待预测数据x,返回x的预测结果值"""
        assert x.shape[0] == self._X_train.shape[1], \
            "the feature number of x must be equal to X_train"

        distances = [sqrt(np.sum((x_train - x) ** 2))
                     for x_train in self._X_train]
        nearest = np.argsort(distances)

        topK_y = [self._y_train[i] for i in nearest[:self.k]]
        votes = Counter(topK_y)

        return votes.most_common(1)[0][0]

    def __repr__(self):
        return "KNN(k=%d)" % self.k

三、判断机器学习算法的性能

在实际使用中,我们无法在生产环境测试算法的好坏,例如股票预测系统要求实时性,或无法获得相应的标记进行检验。

此时,我们可以将已有数据集分为两部分:训练数据集(绝大部分),测试数据集(较小部分),

根据训练数据集训练出模型,并使用测试数据集进行检验,从而判断模型的好坏并改进。

设定测试样本的比例(20%)

代码实现如下:

def train_test_split(X, y, test_ratio=0.2, seed=None):
    """将数据 X 和 y 按照test_ratio分割成X_train, X_test, y_train, y_test"""
    assert X.shape[0] == y.shape[0], \
        "the size of X must be equal to the size of y"
    assert 0.0 <= test_ratio <= 1.0, \
        "test_ration must be valid"

    if seed:
        np.random.seed(seed)

    shuffled_indexes = np.random.permutation(len(X))

    test_size = int(len(X) * test_ratio)
    test_indexes = shuffled_indexes[:test_size]
    train_indexes = shuffled_indexes[test_size:]

    X_train = X[train_indexes]
    y_train = y[train_indexes]

    X_test = X[test_indexes]
    y_test = y[test_indexes]

    return X_train, X_test, y_train, y_test

调用该模块并获取训练、测试数据集,注意:kNN算法不需要生成模型,所以直接使用测试数据集进行测试

同样地,scikit-learn也封装有实现该功能的方法:

posted @ 2022-02-21 20:20  Kyle0418  阅读(194)  评论(1编辑  收藏  举报