WebSocket 协议详解

一、WebSocket 协议背景

早期,在网站上推送消息给用户,只能通过轮询的方式或 Comet 技术。轮询就是浏览器每隔几秒钟向服务端发送 HTTP 请求,然后服务端返回消息给客户端。

轮询技术一般在浏览器上就是使用 setInerval 或 setTimeout

这种方式的缺点:

需要不断的向服务端发送 HTTP 请求,这种就比较浪费带宽资源。而且发送 HTTP 请求只能由客户端发起,这也是早期 HTTP1.0/1.1 协议的一个缺点。它做不到由服务端向客户端发起请求。

为了能实现客户端和服务端的双向通信,经过多年发展于是 WebSocket 协议在 2008 年就诞生了。

它最初是在 HTML5 中引入的。经过多年发展后,该协议慢慢被多个浏览器支持,RFC 在 2011 年就把该协议作为一个国际标准,叫 rfc6455

HTTP1.0 协议有个性质:它是一个无状态的协议。客户端每次发起一个请求,然后服务端回复一个请求,这次连接就会关闭。客户端断开与服务端的连接。而 WebSocket 协议不会关闭。

HTTP1.1 协议加了一个 Keep-Alive 的属性,这个不能看作是一个长连接,它是对 TCP 连接的设置使用,是对这一次的连接存活最大时间设置。在这次存活时间内可以继续发送 HTTP 消息。对于这个属性每个服务器有一个默认超时时间,最终还是会关闭。而 WebSocket 协议是一个长连接,虽然它也是建立在 TCP 之上,但是它通过 HTTP 协议握手成功后,成为 WebSocket 协议,之后交互数据不需要发送 HTTP Header 和 HTTP Request 数据,WebSocket 有自己的数据编码协议。WebSocket 协议本身也对探测服务端是否存活作了规定,详细情况请看下面的内容。

简单图解对比下 2 个协议交互情况:

image

二、协议简介

WebSocket 是一种支持双向通信的网络协议。

  • 双向通信:客户端(比如浏览器)可以向服务端发送消息,服务端也可以主动向客户端发送消息。

这样就实现了客户端和服务端的双向通信,那么上面所说的消息推送就比较容易实现了。

原先的 HTTP1.0/1.1 只能是客户端向服务端发送消息。

协议特点:

  • 建立在 TCP 协议之上。
  • WebSocket 协议是从 HTTP 协议升级而来。
  • 与 HTTP 协议良好兼容新。默认端口是 80 和 443,握手阶段采用 HTTP 协议。
  • 数据格式比较轻量,通信效率高,性能开销小。
  • 可以发送文本,也可以发送二进制数据。
  • 没有同源限制,客户端可以与任意服务端通信。
  • 协议标识符是 ws(如果加密,则为 wss),服务器网址就是 URL。
  • 可以支持扩展,定了扩展协议。
  • 保持连接状态,websocket 是一种有状态的协议,通信就可以省略部分状态信息。
  • 实时性更强,因为是双向通信协议,所以服务端可以随时向客户端发送数据。

三、HTTP 升级到 WebSocket 过程

WebSocket 协议建立复用了 HTTP 的握手请求过程。

客户端通过 HTTP 请求与 WebSocket 服务端协商升级协议。协议完成后,后续的数据交互则遵循 WebSocket 的协议。

  1. 客户端发起协议升级请求
GET / HTTP/1.1
Host: localhost:8080
Origin: http://127.0.0.1:3000
Connection: Upgrade
Upgrade: websocket
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: w4v7O6xFTi36lq3RNcgctw==

说明:上面请求信息忽略了 HTTP 的一些非必要头部请求信息,剔除多余的干扰。

  • Origin: http://127.0.0.1:3000 : 原始的协议和URL
  • Connection: Upgrade:表示要升级协议了
  • Upgrade: websocket:表示要升级到 WebSocket 协议;
  • Sec-WebSocket-Version: 13:表示 WebSocket 的版本。如果服务端不支持该版本,需要返回一个 Sec-WebSocket-Versionheader ,里面包含服务端支持的版本号
  • Sec-WebSocket-Key:与后面服务端响应首部的 Sec-WebSocket-Accept 是配套的,提供基本的防护,比如恶意的连接,或者无意的连接
  1. 服务端响应协议升级
HTTP/1.1 101 Switching Protocols
Connection:Upgrade
Upgrade: websocket
Sec-WebSocket-Accept: Oy4NRAQ13jhfONC7bP8dTKb4PTU=
  • HTTP/1.1 101 Switching Protocols: 状态码 101 表示协议切换

  • Sec-WebSocket-Accept:根据客户端请求首部的 Sec-WebSocket-Key 计算出来

    将 Sec-WebSocket-Key 跟 258EAFA5-E914-47DA-95CA-C5AB0DC85B11 拼接。

    通过 SHA1 计算出摘要,并转成 base64 字符串。计算公式如下:

    Base64(sha1(Sec-WebSocket-Key + 258EAFA5-E914-47DA-95CA-C5AB0DC85B11))
    
  • Connection:Upgrade:表示协议升级

  • Upgrade: websocket:升级到 websocket 协议

四、WebSocket 数据交换

数据帧格式

在 WebSocket 协议中,客户端与服务端数据交换的最小信息单位叫做帧(frame),由 1 个或多个帧按照次序组成一条完整的消息(message)。

数据传输的格式是由 ABNF 来描述的。

WebSocket 数据帧的统一格式如下图:

0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-------+-+-------------+-------------------------------+
|F|R|R|R| opcode|M| Payload len |    Extended payload length    |
|I|S|S|S|  (4)  |A|     (7)     |             (16/64)           |
|N|V|V|V|       |S|             |   (if payload len==126/127)   |
| |1|2|3|       |K|             |                               |
+-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +
|     Extended payload length continued, if payload len == 127  |
+ - - - - - - - - - - - - - - - +-------------------------------+
|                               |Masking-key, if MASK set to 1  |
+-------------------------------+-------------------------------+
| Masking-key (continued)       |          Payload Data         |
+-------------------------------- - - - - - - - - - - - - - - - +
:                     Payload Data continued ...                :
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
|                     Payload Data continued ...                |
+---------------------------------------------------------------+

https://www.rfc-editor.org/rfc/rfc6455.html#section-5.2 Base Framing Protocol)

上面图中名词解释:

名词 说明 大小
FIN 如果是 1,表示这是消息(message)的最后一个分片(fragment);如果是 0,表示不是是消息(message)的最后一个分片(fragment) 1 个比特
RSV1, RSV2, RSV3 一般情况下全为 0。当客户端、服务端协商采用 WebSocket 扩展时,这三个标志位可以非 0,且值的含义由扩展进行定义。如果出现非零的值,且并没有采用 WebSocket 扩展,连接出错 各占 1 个比特
opcode 操作代码,Opcode 的值决定了应该如何解析后续的数据载荷(data payload)。如果操作代码是不认识的,那么接收端应该断开连接(fail the connection) 4 个比特
mask 表示是否要对数据载荷进行掩码操作。从客户端向服务端发送数据时,需要对数据进行掩码操作;从服务端向客户端发送数据时,不需要对数据进行掩码操作。
如果服务端接收到的数据没有进行过掩码操作,服务端需要断开连接。
如果 Mask 是 1,那么在 Masking-key 中会定义一个掩码键(masking key),并用这个掩码键来对数据载荷进行反掩码。所有客户端发送到服务端的数据帧,Mask 都是 1。
1 个比特
Payload length 数据载荷的长度,单位是字节。假设数 Payload length === x,如果:
x 为 0~126:数据的长度为 x 字节。
x 为 126:后续 2 个字节代表一个 16 位的无符号整数,该无符号整数的值为数据的长度。
x 为 127:后续 8 个字节代表一个 64 位的无符号整数(最高位为 0),该无符号整数的值为数据的长度。
此外,如果 payload length 占用了多个字节的话,payload length 的二进制表达采用网络序(big endian,重要的位在前)。
为 7 位,或 7+16 位,或 1+64 位。
Masking-key 所有从客户端传送到服务端的数据帧,数据载荷都进行了掩码操作,Mask 为 1,且携带了 4 字节的 Masking-key。如果 Mask 为 0,则没有 Masking-key。
备注:载荷数据的长度,不包括 mask key 的长度。
0 或 4 字节(32 位
Payload data 载荷数据:包括了扩展数据、应用数据。其中,扩展数据 x 字节,应用数据 y 字节。The "Payload data" is defined as "Extension data" concatenated with "Application data".
扩展数据:如果没有协商使用扩展的话,扩展数据数据为 0 字节。所有的扩展都必须声明扩展数据的长度,或者可以如何计算出扩展数据的长度。此外,扩展如何使用必须在握手阶段就协商好。如果扩展数据存在,那么载荷数据长度必须将扩展数据的长度包含在内。
应用数据:任意的应用数据,在扩展数据之后(如果存在扩展数据),占据了数据帧剩余的位置。载荷数据长度 减去 扩展数据长度,就得到应用数据的长度。
(x+y) 字节

表中 opcode 操作码:

  • %x0:表示一个延续帧(continuation frame)。当 Opcode 为 0 时,表示本次数据传输采用了数据分片,当前收到的数据帧为其中一个数据分片。
  • %x1:表示这是一个文本帧(frame),text frame
  • %x2:表示这是一个二进制帧(frame),binary frame
  • %x3-7:保留的操作代码,用于后续定义的非控制帧。
  • %x8:表示连接断开。connection close
  • %x9:表示这是一个 ping 操作。a ping
  • %xA:表示这是一个 pong 操作。a pong
  • %xB-F:保留的操作代码,用于后续定义的控制帧。

数据帧另外一种表达方式

    ws-frame                = frame-fin           ; 1 bit in length
                              frame-rsv1          ; 1 bit in length
                              frame-rsv2          ; 1 bit in length
                              frame-rsv3          ; 1 bit in length
                              frame-opcode        ; 4 bits in length
                              frame-masked        ; 1 bit in length
                              frame-payload-length   ; either 7, 7+16,
                                                     ; or 7+64 bits in
                                                     ; length
                              [ frame-masking-key ]  ; 32 bits in length
                              frame-payload-data     ; n*8 bits in
                                                     ; length, where
                                                     ; n >= 0

    frame-fin               = %x0 ; more frames of this message follow
                            / %x1 ; final frame of this message
                                  ; 1 bit in length

    frame-rsv1              = %x0 / %x1
                              ; 1 bit in length, MUST be 0 unless
                              ; negotiated otherwise

    frame-rsv2              = %x0 / %x1
                              ; 1 bit in length, MUST be 0 unless
                              ; negotiated otherwise

    frame-rsv3              = %x0 / %x1
                              ; 1 bit in length, MUST be 0 unless
                              ; negotiated otherwise

    frame-opcode            = frame-opcode-non-control /
                              frame-opcode-control /
                              frame-opcode-cont

    frame-opcode-cont       = %x0 ; frame continuation

    frame-opcode-non-control= %x1 ; text frame
                            / %x2 ; binary frame
                            / %x3-7
                            ; 4 bits in length,
                            ; reserved for further non-control frames

    frame-opcode-control    = %x8 ; connection close
                            / %x9 ; ping
                            / %xA ; pong
                            / %xB-F ; reserved for further control
                                    ; frames
                                    ; 4 bits in length
                                    
    frame-masked            = %x0
                            ; frame is not masked, no frame-masking-key
                            / %x1
                            ; frame is masked, frame-masking-key present
                            ; 1 bit in length

    frame-payload-length    = ( %x00-7D )
                            / ( %x7E frame-payload-length-16 )
                            / ( %x7F frame-payload-length-63 )
                            ; 7, 7+16, or 7+64 bits in length,
                            ; respectively

    frame-payload-length-16 = %x0000-FFFF ; 16 bits in length

    frame-payload-length-63 = %x0000000000000000-7FFFFFFFFFFFFFFF
                            ; 64 bits in length

    frame-masking-key       = 4( %x00-FF )
                              ; present only if frame-masked is 1
                              ; 32 bits in length

    frame-payload-data      = (frame-masked-extension-data
                               frame-masked-application-data)
                            ; when frame-masked is 1
                              / (frame-unmasked-extension-data
                                frame-unmasked-application-data)
                            ; when frame-masked is 0

    frame-masked-extension-data     = *( %x00-FF )
                            ; reserved for future extensibility
                            ; n*8 bits in length, where n >= 0

    frame-masked-application-data   = *( %x00-FF )
                            ; n*8 bits in length, where n >= 0

    frame-unmasked-extension-data   = *( %x00-FF )
                            ; reserved for future extensibility
                            ; n*8 bits in length, where n >= 0

    frame-unmasked-application-data = *( %x00-FF )
                            ; n*8 bits in length, where n >= 0

客户端到服务端的掩码算法

https://www.rfc-editor.org/rfc/rfc6455.html#section-5.3 Client-to-Server Masking

掩码键(Masking-key)是由客户端挑选出来的 32 位的随机数。掩码操作不会影响数据载荷的长度。掩码、反掩码操作都采用如下算法:

举例说明:

Octet i of the transformed data ("transformed-octet-i") is the XOR of
octet i of the original data ("original-octet-i") with octet at index
i modulo 4 of the masking key ("masking-key-octet-j"):

     j                   = i MOD 4
     transformed-octet-i = original-octet-i XOR masking-key-octet-j
  • original-octet-i:为原始数据的第 i 字节。
  • transformed-octet-i:为转换后的数据的第 i 字节。
  • j:为i mod 4的结果。
  • masking-key-octet-j:为 mask key 第 j 字节。

算法描述为: original-octet-i 与 masking-key-octet-j 异或后,得到 transformed-octet-i。

j  = i MOD 4
transformed-octet-i = original-octet-i XOR masking-key-octet-j

数据分片

分片的目的:

  • 有了消息分片,发送一个消息的时候,就可以发送未知大小的信息。如果消息不能被分片,那么就不得不缓冲整个消息,以便计算长度。而有了分片就可以选择合适大小缓冲区来缓冲分片。
  • 第二个目的是可以使用多路复用。

WebSocket 的每条消息(message)可能被切分为多个数据帧。

当 WebSocket 的接收方接收到一个数据帧时,会根据 FIN 值来判断是否收到消息的最后一个数据帧。

从上图可以看出,FIN = 1 时,表示为消息的最后一个数据帧;FIN = 0 时,则不是消息的最后一个数据帧,接收方还要继续监听接收剩余数据帧。

opcode 表示数据传输的类型,0x01 表示文本类型的数据;0x02 表示二进制类型的数据;0x00 比较特殊,表示延续帧(continuation frame),意思就是完整数据对应的数据帧还没有接收完。

更多分片内容请看这里:https://www.rfc-editor.org/rfc/rfc6455.html#section-5.4

消息分片example:

Client: FIN=1, opcode=0x1, msg="hello"
Server: (process complete message immediately) Hi.
Client: FIN=0, opcode=0x1, msg="and a"
Server: (listening, new message containing text started)
Client: FIN=0, opcode=0x0, msg="happy new"
Server: (listening, payload concatenated to previous message)
Client: FIN=1, opcode=0x0, msg="year!"
Server: (process complete message) Happy new year to you too!

(具体例子见:https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers)

五:怎么保持连接

在第二小结中我们介绍了 websocket 的特点,其中有一个是保持连接状态。

websocket 是建立在 tcp 之上,那也就是客户端与服务端的 tcp 通道要保持连接不断开。

怎么保持呢?可以用心跳来实现。

其实 websocket 协议早就想到了,它的帧数据格式中有一个字段 opcode,定义了 2 种类型操作, ping 和 pong,opcode 分别是 0x9、0xA

说明:对于长时间没有数据往来的连接,如果依旧长时间保持连接的状态,那么就会浪费连接资源。

[完]

六、参考

posted @ 2022-04-21 16:04  九卷  阅读(4616)  评论(0编辑  收藏  举报