基于C++的OpenGL 10 之光照贴图
1. 引言
本文基于C++语言,描述OpenGL的光照贴图
前置知识可参考:
笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:
2. 概述
纹理的每个像素,就是该像素点反射的颜色,亦或者说是该点的反射因子
通过纹理贴图,设置平面每个像素点的反射因子(主要是漫反射),实现光照贴图
3. 编码
3.1 漫反射光照
在片段着色器中,使用纹理定义反射因子:
struct Material { sampler2D diffuse; vec3 specular; float shininess; }; ... in vec2 TexCoords;
- 这里将使用环境光照下的反射颜色等同漫反射颜色
计算每个像素点的漫反射光照:
... void main() { ... // 将环境光下的材质颜色设置为漫反射材质颜色同样的值 vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords)); }
在顶点着色器中传输数据:
#version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec3 aNormal; layout (location = 2) in vec2 aTexCoords; ... out vec2 TexCoords; void main() { ... TexCoords = aTexCoords; }
配置贴图的坐标:
float vertices[] = { // positions // normals // texture coords -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f };
绑定纹理图片:
// 纹理 unsigned int texture; glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); // 为当前绑定的纹理对象设置环绕、过滤方式 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // 加载并生成纹理 int width, height, nrChannels; unsigned char *data = stbi_load("../container2.png", &width, &height, &nrChannels, 0); if (data) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); glGenerateMipmap(GL_TEXTURE_2D); } else { std::cout << "Failed to load texture" << std::endl; } stbi_image_free(data); lightingShader.setInt("material.diffuse", 0); ... // 绘制时 ... glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture);
使用以下图片:
结果图如下:
这显然不对劲,箱子边缘上的钢铁才应该有高光
对于镜面光照,也应该根据不同像素点设置不同的反射因子
3.2 镜面光照
在这里,根据箱子图片生成黑白的镜面反射贴图,用以表征每个像素点的镜面反射因子,其中,木头部分假设没有高光
在片段着色器中,进一步使用纹理定义反射因子:
struct Material { sampler2D diffuse; sampler2D specular; float shininess; };
计算每个像素点的反射颜色:
... out vec2 TexCoords; void main() { ... vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords)); vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords)); FragColor = vec4(ambient + diffuse + specular, 1.0); }
绑定纹理图片:
// 镜面反射纹理 unsigned int texture1; glGenTextures(1, &texture1); glBindTexture(GL_TEXTURE_2D, texture1); // 为当前绑定的纹理对象设置环绕、过滤方式 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // 加载并生成纹理 data = stbi_load("../container2_specular.png", &width, &height, &nrChannels, 0); if (data) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); glGenerateMipmap(GL_TEXTURE_2D); } else { std::cout << "Failed to load texture" << std::endl; } stbi_image_free(data); lightingShader.setInt("material.diffuse", 1); ... // 绘制时 ... glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture1);
结果图如下:
4. 完整代码
主要文件material.cpp
:
#include <glad/glad.h> #include <GLFW/glfw3.h> #include <iostream> #include <math.h> #include "Shader.hpp" #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #include <glm/glm.hpp> #include <glm/ext/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale #include <glm/ext/matrix_clip_space.hpp> // glm::perspective #include <glm/gtc/type_ptr.hpp> //全局变量 glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 10.0f); glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f); glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f); glm::vec3 lightPos(0.8f, 1.0f, 2.0f); // 函数声明 void framebuffer_size_callback(GLFWwindow *window, int width, int height); void process_input(GLFWwindow *window); int main() { glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); GLFWwindow *window = glfwCreateWindow(800, 600, "LightingMaps", nullptr, nullptr); if (window == nullptr) { std::cout << "Faild to create window" << std::endl; glfwTerminate(); } glfwMakeContextCurrent(window); if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { std::cout << "Faild to initialize glad" << std::endl; return -1; } glad_glViewport(0, 0, 800, 600); glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); //配置项 glEnable(GL_DEPTH_TEST); Shader lightCubeShader("../light_cube.vs.glsl", "../light_cube.fs.glsl"); Shader lightingShader("../cube.vs.glsl", "../cube.fs.glsl"); unsigned int cubeVAO; glGenVertexArrays(1, &cubeVAO); glBindVertexArray(cubeVAO); float vertices[] = { // positions // normals // texture coords -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f }; unsigned int VBO; glGenBuffers(1, &VBO); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *)(3*sizeof(float))); glEnableVertexAttribArray(1); glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void *)(6*sizeof(float))); glEnableVertexAttribArray(2); // 纹理 unsigned int texture; glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); // 为当前绑定的纹理对象设置环绕、过滤方式 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // 加载并生成纹理 int width, height, nrChannels; unsigned char *data = stbi_load("../container2.png", &width, &height, &nrChannels, 0); if (data) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); glGenerateMipmap(GL_TEXTURE_2D); } else { std::cout << "Failed to load texture" << std::endl; } stbi_image_free(data); lightingShader.setInt("material.diffuse", 0); // 镜面反射纹理 unsigned int texture1; glGenTextures(1, &texture1); glBindTexture(GL_TEXTURE_2D, texture1); // 为当前绑定的纹理对象设置环绕、过滤方式 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // 加载并生成纹理 data = stbi_load("../container2_specular.png", &width, &height, &nrChannels, 0); if (data) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); glGenerateMipmap(GL_TEXTURE_2D); } else { std::cout << "Failed to load texture" << std::endl; } stbi_image_free(data); lightingShader.setInt("material.diffuse", 1); unsigned int lightCubeVAO; glGenVertexArrays(1, &lightCubeVAO); glBindVertexArray(lightCubeVAO); // 只需要绑定VBO不用再次设置VBO的数据,因为箱子的VBO数据中已经包含了正确的立方体顶点数据 glBindBuffer(GL_ARRAY_BUFFER, VBO); // 设置灯立方体的顶点属性(对我们的灯来说仅仅只有位置数据) glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0); glEnableVertexAttribArray(0); while (!glfwWindowShouldClose(window)) { process_input(window); glClearColor(0.0, 0.0, 0.0, 1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, texture1); lightingShader.use(); lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f); lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f); lightingShader.setVec3("lightPos", lightPos); lightingShader.setVec3("viewPos", cameraPos); lightingShader.setFloat("material.shininess", 32.0f); lightingShader.setVec3("light.ambient", 0.2f, 0.2f, 0.2f); lightingShader.setVec3("light.diffuse", 0.5f, 0.5f, 0.5f); // 将光照调暗了一些以搭配场景 lightingShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f); glm::mat4 model = glm::mat4(1.0f); model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f)); glm::mat4 view = glm::mat4(1.0f); // view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f)); view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp); glm::mat4 projection = glm::mat4(1.0f); projection = glm::perspective(glm::radians(45.0f), 800.0f / 600.0f, 0.1f, 100.0f); // 模型矩阵 int modelLoc = glGetUniformLocation(lightingShader.ID, "model"); glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model)); // 观察矩阵和投影矩阵与之类似 int viewLoc = glGetUniformLocation(lightingShader.ID, "view"); glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view)); int projectionLoc = glGetUniformLocation(lightingShader.ID, "projection"); glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection)); // render the cube glBindVertexArray(cubeVAO); glDrawArrays(GL_TRIANGLES, 0, 36); // also draw the lamp object lightCubeShader.use(); lightCubeShader.setMat4("projection", projection); lightCubeShader.setMat4("view", view); model = glm::mat4(1.0f); model = glm::translate(model, lightPos); model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube lightCubeShader.setMat4("model", model); glBindVertexArray(lightCubeVAO); glDrawArrays(GL_TRIANGLES, 0, 36); glfwSwapBuffers(window); glfwPollEvents(); } glfwTerminate(); return 0; } void framebuffer_size_callback(GLFWwindow *window, int width, int height) { glViewport(0, 0, width, height); } void process_input(GLFWwindow *window) { if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) { glfwSetWindowShouldClose(window, true); } float cameraSpeed = 0.05f; // adjust accordingly if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS) cameraPos += cameraSpeed * cameraFront; if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS) cameraPos -= cameraSpeed * cameraFront; if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS) cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed; if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS) cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed; }
立方体顶点着色器GLSLcube.vs.glsl
:
#version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec3 aNormal; layout (location = 2) in vec2 aTexCoords; out vec3 Normal; out vec3 FragPos; out vec2 TexCoords; uniform mat4 model; uniform mat4 view; uniform mat4 projection; void main() { gl_Position = projection * view * model * vec4(aPos, 1.0); FragPos = vec3(model * vec4(aPos, 1.0)); Normal = aNormal; TexCoords = aTexCoords; }
立方体片段着色器GLSLcube.fs.glsl
:
#version 330 core struct Material { sampler2D diffuse; sampler2D specular; float shininess; }; struct Light { vec3 position; vec3 ambient; vec3 diffuse; vec3 specular; }; in vec3 Normal; in vec3 FragPos; in vec2 TexCoords; out vec4 FragColor; uniform vec3 objectColor; uniform vec3 lightColor; uniform vec3 lightPos; uniform vec3 viewPos; uniform Material material; uniform Light light; void main() { // 环境光 // 将环境光下的材质颜色设置为漫反射材质颜色同样的值 vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords)); // 漫反射 vec3 norm = normalize(Normal); vec3 lightDir = normalize(lightPos - FragPos); float diff = max(dot(norm, lightDir), 0.0); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords)); // 镜面光 vec3 viewDir = normalize(viewPos - FragPos); vec3 reflectDir = reflect(-lightDir, norm); float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess); vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords)); vec3 result = ambient + diffuse + specular; FragColor = vec4(result, 1.0); }
着色器Shader.hpp
、光源顶点着色器GLSLlight_cube.vs.glsl
、光源片段着色器GLSLlight_cube.fs.glsl
见:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律