基于C++的OpenGL 08 之基础光照
1. 引言
本文基于C++语言,描述OpenGL的基础光照
前置知识可参考:
笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:
2. 概述
冯氏光照模型(Phong Lighting Model):环境(Ambient)、漫反射(Diffuse)和镜面(Specular)光照
漫反射光照的强度由法向量与光的方向向量的余弦值决定,角度越小,光照越强
镜面光照的强度由视线向量与光的反射向量的余弦值决定,角度越小,光照越强
3. 环境光照
使用一个很小的常量因子乘以光的颜色,模拟环境光照
在片段着色器GLSL中:
... void main() { float ambientStrength = 0.1; vec3 ambient = ambientStrength * lightColor; vec3 result = ambient * objectColor; FragColor = vec4(result, 1.0); }
结果如下图:
4. 漫反射光照
使用光线与法向量的余弦值作为漫反射因子,再乘以光的颜色来模拟漫反射光照
在这里,法向量由我们手动输入,光的方向由光的位置向量减去平面的位置向量获取
4.1 法向量
设置物体每个平面的法向量:
float vertices[] = { -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, -0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f };
绑定属性:
// 立方体 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)(3*sizeof(float))); glEnableVertexAttribArray(1); // 光源立方体 ... glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0); glEnableVertexAttribArray(0);
在顶点着色器中将法向量变换为世界坐标并向片段着色器传递数据:
#version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec3 aNormal; ... out vec3 Normal; void main() { gl_Position = projection * view * model * vec4(aPos, 1.0); Normal = mat3(transpose(inverse(model))) * aNormal; }
在片段着色器接收数据:
in vec3 Normal; void main() { ... vec3 norm = normalize(Normal); }
4.2 光的方向向量
在片段着色器中设置光源位置向量:
uniform vec3 lightPos;
传输数据:
lightingShader.setVec3("lightPos", lightPos);
将平面位置变换到世界坐标得到位置向量:
out vec3 FragPos; out vec3 Normal; void main() { gl_Position = projection * view * model * vec4(aPos, 1.0); FragPos = vec3(model * vec4(aPos, 1.0)); Normal = aNormal; }
在片段着色器接收数据并计算光的方向向量:
... in vec3 FragPos; void main() { ... vec3 lightDir = normalize(lightPos - FragPos); }
4.3 计算漫反射光照
计算方向向量与光的方向向量之间的余弦值作为漫反射因子(小于零的设为零),再乘以光照颜色得到漫反射光照
在片段着色器中:
float diff = max(dot(norm, lightDir), 0.0); vec3 diffuse = diff * lightColor;
将环境光照与漫反射光照结合:
vec3 result = (ambient + diffuse) * objectColor; FragColor = vec4(result, 1.0);
结果如下图:
5. 镜面光照
计算视线向量与光的反射向量之间的余弦值作为镜面反射因子(小于零的设为零),再乘以光照颜色得到漫反射光照
在片段着色器中设置观察位置:
uniform vec3 viewPos;
向GPU传输数据:
lightingShader.setVec3("viewPos", cameraPos);
计算视线向量(观察方向)与反射向量:
vec3 viewDir = normalize(viewPos - FragPos); vec3 reflectDir = reflect(-lightDir, norm);
定义镜面强度,即反射能力:
float specularStrength = 0.5;
计算镜面光照:
float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32); vec3 specular = specularStrength * spec * lightColor;
将环境光照、漫反射光照、镜面光照结合:
vec3 result = (ambient + diffuse + specular) * objectColor; FragColor = vec4(result, 1.0);
结果如下图:
6. 完整代码
主要文件Lighting.cpp
:
#include <glad/glad.h> #include <GLFW/glfw3.h> #include <iostream> #include <math.h> #include "Shader.hpp" #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #include <glm/glm.hpp> #include <glm/ext/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale #include <glm/ext/matrix_clip_space.hpp> // glm::perspective #include <glm/gtc/type_ptr.hpp> //全局变量 glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 10.0f); glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f); glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f); glm::vec3 lightPos(1.2f, 1.0f, 2.0f); // 函数声明 void framebuffer_size_callback(GLFWwindow *window, int width, int height); void process_input(GLFWwindow *window); int main() { glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); GLFWwindow *window = glfwCreateWindow(800, 600, "lighting", nullptr, nullptr); if (window == nullptr) { std::cout << "Faild to create window" << std::endl; glfwTerminate(); } glfwMakeContextCurrent(window); if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) { std::cout << "Faild to initialize glad" << std::endl; return -1; } glad_glViewport(0, 0, 800, 600); glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); //配置项 glEnable(GL_DEPTH_TEST); Shader lightCubeShader("../light_cube.vs.glsl", "../light_cube.fs.glsl"); Shader lightingShader("../cube.vs.glsl", "../cube.fs.glsl"); unsigned int cubeVAO; glGenVertexArrays(1, &cubeVAO); glBindVertexArray(cubeVAO); float vertices[] = { -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, -0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, -0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, -0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, -0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, -0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f }; unsigned int VBO; glGenBuffers(1, &VBO); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)(3*sizeof(float))); glEnableVertexAttribArray(1); unsigned int lightCubeVAO; glGenVertexArrays(1, &lightCubeVAO); glBindVertexArray(lightCubeVAO); // 只需要绑定VBO不用再次设置VBO的数据,因为箱子的VBO数据中已经包含了正确的立方体顶点数据 glBindBuffer(GL_ARRAY_BUFFER, VBO); // 设置灯立方体的顶点属性(对我们的灯来说仅仅只有位置数据) glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0); glEnableVertexAttribArray(0); while (!glfwWindowShouldClose(window)) { process_input(window); glClearColor(0.0, 0.0, 0.0, 1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); lightingShader.use(); lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f); lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f); lightingShader.setVec3("lightPos", lightPos); lightingShader.setVec3("viewPos", cameraPos); glm::mat4 model = glm::mat4(1.0f); model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f)); glm::mat4 view = glm::mat4(1.0f); // view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f)); view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp); glm::mat4 projection = glm::mat4(1.0f); projection = glm::perspective(glm::radians(45.0f), 800.0f / 600.0f, 0.1f, 100.0f); // 模型矩阵 int modelLoc = glGetUniformLocation(lightingShader.ID, "model"); glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model)); // 观察矩阵和投影矩阵与之类似 int viewLoc = glGetUniformLocation(lightingShader.ID, "view"); glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view)); int projectionLoc = glGetUniformLocation(lightingShader.ID, "projection"); glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection)); // render the cube glBindVertexArray(cubeVAO); glDrawArrays(GL_TRIANGLES, 0, 36); // also draw the lamp object lightCubeShader.use(); lightCubeShader.setMat4("projection", projection); lightCubeShader.setMat4("view", view); model = glm::mat4(1.0f); model = glm::translate(model, lightPos); model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube lightCubeShader.setMat4("model", model); glBindVertexArray(lightCubeVAO); glDrawArrays(GL_TRIANGLES, 0, 36); glfwSwapBuffers(window); glfwPollEvents(); } glfwTerminate(); return 0; } void framebuffer_size_callback(GLFWwindow *window, int width, int height) { glViewport(0, 0, width, height); } void process_input(GLFWwindow *window) { if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS) { glfwSetWindowShouldClose(window, true); } float cameraSpeed = 0.05f; // adjust accordingly if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS) cameraPos += cameraSpeed * cameraFront; if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS) cameraPos -= cameraSpeed * cameraFront; if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS) cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed; if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS) cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed; }
立方体顶点着色器GLSLcue.vs.glsl
:
#version 330 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec3 aNormal; out vec3 Normal; out vec3 FragPos; uniform mat4 model; uniform mat4 view; uniform mat4 projection; void main() { gl_Position = projection * view * model * vec4(aPos, 1.0); FragPos = vec3(model * vec4(aPos, 1.0)); Normal = aNormal; }
立方体片段着色器GLSLcube.fs.glsl
:
#version 330 core in vec3 Normal; in vec3 FragPos; out vec4 FragColor; uniform vec3 objectColor; uniform vec3 lightColor; uniform vec3 lightPos; uniform vec3 viewPos; void main() { float ambientStrength = 0.1; vec3 ambient = ambientStrength * lightColor; vec3 norm = normalize(Normal); vec3 lightDir = normalize(lightPos - FragPos); float diff = max(dot(norm, lightDir), 0.0); vec3 diffuse = diff * lightColor; vec3 viewDir = normalize(viewPos - FragPos); vec3 reflectDir = reflect(-lightDir, norm); float specularStrength = 0.8; float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32); vec3 specular = specularStrength * spec * lightColor; vec3 result = (ambient + diffuse + specular) * objectColor; FragColor = vec4(result, 1.0); }
着色器Shader.hpp
、光源顶点着色器GLSLlight_cube.vs.glsl
、光源片段着色器GLSLlight_cube.fs.glsl
见:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!