poj1067-取石子游戏 (威佐夫博弈)
http://poj.org/problem?id=1067
取石子游戏
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 36753 | Accepted: 12446 |
Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
Sample Input
2 1 8 4 4 7
Sample Output
0 1 0
题解:这是威佐夫博弈。所谓威佐夫博弈,是ACM题中常见的组合游戏中的一种,大致上是这样的:
有两堆石子,不妨先认为一堆有 10,另一堆有 15 个,双方轮流取走一些石子,合法的取法有如下两种:
1、在一堆石子中取走任意多颗;
2、在两堆石子中取走相同多的任意颗;
约定取走最后一颗石子的人为赢家,求必胜策略。
两堆石头地位是一样的,我们用余下的石子数(a,b)来表示状态。状态有必败态、必胜态和可能胜利态。比如:(0,0)肯定是必败态。(0,k),(k,0),(k,k)系列的节点肯定是必胜态。经分析推敲,我们可以知道必败态有:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)等。对于必败态(ak,bk),我们有:ak =[k*(1+√5)/2],bk= ak + k (k=0,1,2,...n ,其中方括号表示取整函数) 。对于必败态,先拿者输;对于非必败态,先拿者赢。至于数学证明,参考一位博友的文章吧:http://blog.sina.com.cn/s/blog_727d57100100ql6e.html
代码:
1 #include <fstream> 2 #include <iostream> 3 #include <cstdio> 4 #include <cmath> 5 6 using namespace std; 7 8 int main() 9 { 10 //freopen("D:\\input.in","r",stdin); 11 //freopen("D:\\output.out","w",stdout); 12 int a,b; 13 double m=(sqrt(5.0)+1)/2; 14 while(~scanf("%d%d",&a,&b)){ 15 if(a<b){ 16 a^=b; 17 b^=a; 18 a^=b; 19 } 20 int k=a-b; 21 if(b==(int)(k*m)) 22 puts("0"); 23 else 24 puts("1"); 25 } 26 return 0; 27 }