gcd,扩展欧几里得,中国剩余定理

1.gcd:

int gcd(int a,int b){
    return b==0?a:gcd(b,a%b);
}

2.中国剩余定理:

题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题:有一正整数ans,对于每一对数,都有:(ans-a[i])mod m[i]=0.求此数最小为多少。

输入样例:

1
10
2
3
1 2 3
2 3 5
8
1 2 3 4 5 6 7 8
97 89 67 61 59 53 47 88
12
1 2 3 4 5 6 7 8 9 10 11 12
2 3 5 7 11 13 17 19 23 29 31 37
2
-2 0
999999999 1000000000
3
-10000 -20000 -30000
9999 10000 10001
0

实现代码:

 1 #include <fstream>
 2 #include <iostream>
 3 #include <algorithm>
 4 #include <cstdio>
 5 #include <cstring>
 6 #include <cmath>
 7 #include <cstdlib>
 8 
 9 using namespace std;
10 
11 #define EPS 1e-6
12 #define ll long long
13 #define INF 0x7fffffff
14 
15 int n;
16 ll a[35],m[35];
17 
18 ll ExtendGcd(ll a,ll b,ll &x,ll &y);//扩展欧几里得
19 ll Crt(ll a[],ll m[],int n);//中国剩余定理
20 
21 int main()
22 {
23     //freopen("D:\\input.in","r",stdin);
24     //freopen("D:\\output.out","w",stdout);
25     while(scanf("%d",&n),n){
26         for(int i=0;i<n;i++)    scanf("%lld",&a[i]);
27         for(int i=0;i<n;i++)    scanf("%lld",&m[i]);
28         printf("%lld\n",Crt(a,m,n));
29     }
30     return 0;
31 }
32 ll ExtendGcd(ll a,ll b,ll &x,ll &y){
33     if(!b){
34         x=1,y=0;
35         return a;
36     }else{
37         ll r=ExtendGcd(b,a%b,y,x);
38         y-=x*(a/b);
39         return r;
40     }
41 }
42 ll Crt(ll a[],ll m[],int n){
43     ll mm=1;
44     for(int i=0;i<n;i++)    mm*=m[i];
45     ll ret=0;
46     for(int i=0;i<n;i++){
47         ll x,y;
48         ll tm=mm/m[i];
49         ExtendGcd(tm,m[i],x,y);
50         ret=(ret+tm*x*a[i])%mm;
51     }
52     return (ret+mm)%mm;
53 }
View Code

 

这里简单说下扩展欧几里得的推导:

基本算法:对于不完全为 0 的整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

证明:设 a>b。

  1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

  2,ab!=0 时

  设 ax1+by1=gcd(a,b);

  bx2+(a mod b)y2=gcd(b,a mod b);

  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);

  则:ax1+by1=bx2+(a mod b)y2;

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

  根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;

     这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

   上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

 

顺便提下中国剩余定理:

posted @ 2015-03-16 00:13  jiu~  阅读(618)  评论(0编辑  收藏  举报