瑞萨e2studio(13)----基于DTC的多通道ADC采集

概述

本篇文章主要介绍如何使用e2studio对瑞萨进行DTC配置,并且对多通道ADC进行采集。

硬件准备

首先需要准备一个开发板,这里我准备的是芯片型号R7FA2L1AB2DFL的开发板:

在这里插入图片描述

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA2L1AB2DFL来进行演示。
在这里插入图片描述

工程模板选择

在这里插入图片描述

ADC配置

点击Stacks->New Stack->Driver->Analog -> ADC Driver on r_adc。
在这里插入图片描述

ADC属性配置

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

DTC配置

点击Stacks->New Stack->Driver->Transfer-> Transfer Driver on r_dtc。
在这里插入图片描述

DTC属性配置

在这里插入图片描述

设置e2studio堆栈

在这里插入图片描述

e2studio的重定向printf设置

在这里插入图片描述

C++ 构建->设置->GNU ARM Cross C Linker->Miscellaneous去掉Other linker flags中的 “–specs=rdimon.specs”
在这里插入图片描述

uart配置

点击Stacks->New Stack->Driver->Connectivity -> UART Driver on r_sci_uart。
在这里插入图片描述

uart属性配置

配置串口,用于打印数据。
在这里插入图片描述

printf输出重定向到串口

打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>

#ifdef __GNUC__                                 //串口重定向
    #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
    #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif

PUTCHAR_PROTOTYPE
{
        err = R_SCI_UART_Write(&g_uart0_ctrl, (uint8_t *)&ch, 1);
        if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
        uart_send_complete_flag = false;
        return ch;
}
int _write(int fd,char *pBuffer,int size)
{
    for(int i=0;i<size;i++)
    {
        __io_putchar(*pBuffer++);
    }
    return size;
}

完整代码

#include "hal_data.h"
#include <stdio.h>
FSP_CPP_HEADER
void R_BSP_WarmStart(bsp_warm_start_event_t event);
FSP_CPP_FOOTER

fsp_err_t err = FSP_SUCCESS;
unsigned char send_buff[100];
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{
    if(p_args->event == UART_EVENT_TX_COMPLETE)
    {
        uart_send_complete_flag = true;
    }
}
#ifdef __GNUC__                                 //串口重定向
    #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
    #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif
PUTCHAR_PROTOTYPE
{
        err = R_SCI_UART_Write(&g_uart0_ctrl, (uint8_t *)&ch, 1);
        if(FSP_SUCCESS != err) __BKPT();
        while(uart_send_complete_flag == false){}
        uart_send_complete_flag = false;
        return ch;
}
int _write(int fd,char *pBuffer,int size)
{
    for(int i=0;i<size;i++)
    {
        __io_putchar(*pBuffer++);
    }
    return size;
}
uint16_t adc_result_buffer[3];
/* Callback function */
void adc_callback(adc_callback_args_t *p_args)
{
    /* TODO: add your own code here */
    if( p_args->event == ADC_EVENT_SCAN_COMPLETE )
    {
        err = R_DTC_Reset( &g_transfer0_ctrl,
                           (void*)&R_ADC0->ADDR[0],     // reset source address
                           &adc_result_buffer[0],       // reset destination address
                           1 );                         // reset block size
        if( FSP_SUCCESS != err )
        {
            __BKPT(1);
        }
    }
}
void hal_entry(void)
{
    /* TODO: add your own code here */
    err = R_SCI_UART_Open(&g_uart0_ctrl, &g_uart0_cfg);
      assert(FSP_SUCCESS == err);
      adc_status_t adc_status;
      err = R_ADC_Open(&g_adc0_ctrl, &g_adc0_cfg);
      assert(FSP_SUCCESS == err);
       err = R_ADC_StatusGet (&g_adc0_ctrl, &adc_status);
       assert(FSP_SUCCESS == err);
       err = R_ADC_ScanCfg(&g_adc0_ctrl, &g_adc0_channel_cfg);
       assert(FSP_SUCCESS == err);
       // Source is first ADC result register
       g_transfer0_cfg.p_info->p_src = (void*)&R_ADC0->ADDR[0];
       // Destination is results buffer
       g_transfer0_cfg.p_info->p_dest = &adc_result_buffer[0];
       /* Open the transfer instance with initial configuration. */
       err = R_DTC_Open(&g_transfer0_ctrl, &g_transfer0_cfg);
       /* Handle any errors. This function should be defined by the user. */
       assert(FSP_SUCCESS == err);
       /* Enable the DTC to handle incoming transfer requests. */
       err = R_DTC_Enable(&g_transfer0_ctrl);
       assert(FSP_SUCCESS == err);
while(1)
      {
          /* In software trigger mode, start a scan by calling R_ADC_ScanStart(). In other modes, enable external
           * triggers by calling R_ADC_ScanStart(). */
          err = R_ADC_ScanStart(&g_adc0_ctrl);
          assert(FSP_SUCCESS == err);
          printf("adc[0]_v=%f\n",(float)adc_result_buffer[0]/4095*3.3);
          printf("adc[1]_v=%f\n",(float)adc_result_buffer[1]/4095*3.3);
          printf("adc[2]_v=%f\n",(float)adc_result_buffer[2]/4095*3.3);
          R_BSP_SoftwareDelay(1000, BSP_DELAY_UNITS_MILLISECONDS); // NOLINT100->160
      }
#if BSP_TZ_SECURE_BUILD
    /* Enter non-secure code */
    R_BSP_NonSecureEnter();
#endif
}

多通道ADC采集通过DTC传输例程

现在设置3个ADC通道的输入电压如下所示。

ADC通道管脚输入电压
AN0P000GND(0V)
AN1P001VCC(3.3V)
AN2P0021.5V

结果演示

通过串口打印出的数据如下所示。
在这里插入图片描述

最后

以上的代码会在Q群里分享。QQ群:615061293。
或者关注微信公众号『记帖』,持续更新文章和学习资料,可加作者的微信交流学习!
在这里插入图片描述

posted @ 2022-05-28 22:04  记帖  阅读(299)  评论(0编辑  收藏  举报