波动数列

转自:http://blog.csdn.net/wr132/article/details/43861145
问题描述
  观察这个数列:
  1 3 0 2 -1 1 -2 ...

  这个数列中后一项总是比前一项增加2或者减少3。

  栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢?
输入格式
  输入的第一行包含四个整数 n s a b,含义如前面说述。
输出格式
  输出一行,包含一个整数,表示满足条件的方案数。由于这个数很大,请输出方案数除以100000007的余数。
样例输入
4 10 2 3
样例输出
2
样例说明
  这两个数列分别是2 4 1 3和7 4 1 -2。
数据规模和约定
  对于10%的数据,1<=n<=5,0<=s<=5,1<=a,b<=5;
  对于30%的数据,1<=n<=30,0<=s<=30,1<=a,b<=30;
  对于50%的数据,1<=n<=50,0<=s<=50,1<=a,b<=50;
  对于70%的数据,1<=n<=100,0<=s<=500,1<=a, b<=50;
  对于100%的数据,1<=n<=1000,-1,000,000,000<=s<=1,000,000,000,1<=a, b<=1,000,000。
 
再次更新!!!重大更新!!!经过三次修改,这道题终于最终出来了
抱歉让大家看了那么久的错误代码和错误的思路。
首先要说,这道题是一道DP。
虽然之前也注意到数据范围很大,但因为一开始就想的是搜索,所以就各种搜索剪枝,实际上都是徒劳。
像这种简单的DP题目一般都有两个特点:
1.长得和搜索题很像,甚至就能用搜索做
2.有一个大的吓人的数据
看清这两点,明确了思路,下面开始进入分析阶段:
 
1.按照题目要求,最终得到的序列的长度为n,和为s,并且后一项是前一项加a或减b,我们不妨将这个操作封装在一起,记作P操作,即P=(a,-b)。
 
2.设首项为x,可以得到一个等式x+(x+P)+(x+2P)+...+(x+(n-1)P)=s,将这个式子整理一下,就是nx+P+2P+...+(n-1)P=s,即(s-(P+2P+...+(n-1)P))/n=x。
 
3.由题意,x肯定是一个整数,并且由于每一个P代表一个a或者一个-b,所以a和b的总数为n*(n-1)/2,也就是说只要确定了a的个数,那么b的个数也就确定了。
 
4.关键问题是对于一个确定的a的个数,方案不只有一种,而且a的个数肯定是由(1,2,3,...,n-1)这其中的若干项组成的,,我们把这些项看作元素,第i个元素的权值为i于是,下面就开始构造递推方程
 
5.首先,定义一个数组dp[i][j],表示前i个元素组成和为j的序列的方案数,这里的和j表示的是所有的a的和,很明显当i!=0时dp[i][0]=1,当j!=0时dp[0][j]=0,然后我们要分两种情况讨论
(1)、i>j时,因为每一个元素i权值都是i,所以当元素的个数大于和的时候,第i个元素的权值已经超过了和,所以第i个元素绝对不能使用,即dp[i][j]=dp[i-1][j]。
(2)、i<=j时,第i个元素的权值是小于等于和的,所以可以用,也可以不用,如果不用,那么就是dp[i-1][j],如果用,就是dp[i-1][j-i],这个有点类似于01背包,所以
dp[i][j]=dp[i-1][j]+dp[i-1][j-i]。
 
OK,通过上面的分析,我们得到了递推方程,但还有一个问题,就是空间的问题,题目给出的i的最大值达到1000,相应的j也就是1000^2,我们是不可能开出这么大的数组的,观察递推方程,我们可以看出下一个状态只和前一个状态有关,而且我们实际上只需要最后一个状态即,dp[n][j],于是可以使用滚动数组。
 
先简单说明一下什么叫滚动数组,因为DP的过程就是一个递推的过程,在推导的过程中,数组中的每一个元素或者是前一个状态,或者是后一个状态,但是,当我们并不需要中间状态得到保留的时候,可以使下一个状态覆盖之前的一个状态,这样就可以极大的压缩空间。
 
回到本题,我们定义dp[2][MAX*MAX],也就是说,后面的状态会把前面的状态覆盖掉。
下面上正确的代码
[cpp] view plain copy
 
  1. #include <iostream>  
  2. #include <memory.h>  
  3. #define MAXN 1100  
  4. #define MOD 100000007  
  5. using namespace std;  
  6.   
  7. int F[2][MAXN*MAXN];          
  8. int e = 0;  
  9. long long n,s,a,b;  
  10. int cnt = 0;  
  11.   
  12. void DP(int elem)  
  13. {  
  14.     int i,j;  
  15.     memset(F,0,sizeof(F));  
  16.     F[e][0]=1;  
  17.     for(i=1;i<n;i++)  
  18.     {  
  19.         e=1-e;  
  20.         for(j=0;j<=i*(i+1)/2;j++)  
  21.         {  
  22.             if(i>j)  
  23.                 F[e][j]=F[1-e][j];  
  24.             else  
  25.                 F[e][j]=(F[1-e][j]+F[1-e][j-i])%MOD;  
  26.         }  
  27.     }  
  28. }  
  29.   
  30. int main()  
  31. {  
  32.     cin>>n>>s>>a>>b;  
  33.     long long i,t;  
  34.     DP(n*(n-1)/2);  
  35.     for(i=0; i<=n*(n-1)/2; i++)  
  36.     {  
  37.         t = s - i*a + (n*(n-1)/2-i)*b;  
  38.         if(t%n==0)  
  39.            cnt = (cnt+F[e][i])%MOD;  
  40.     }  
  41.     printf("%d",cnt);  
  42.     return 0;  
  43. }  
posted @ 2016-02-14 10:57  疾如风  阅读(604)  评论(0编辑  收藏  举报