Hadoop2.6.0版本MapReudce示例之WordCount(一)
一、准备测试数据
1、在本地Linux系统/var/lib/Hadoop-hdfs/file/路径下准备两个文件file1.txt和file2.txt,文件列表及各自内容如下图所示:
2、在hdfs中,准备/input路径,并上传两个文件file1.txt和file2.txt,如下图所示:
二、编写代码,封装Jar包并上传至linux
将代码封装成TestMapReduce.jar,并上传至linux的/usr/local路径下,如下图所示:
三、运行命令
执行命令如下:hadoop jar /usr/local/TestMapReduce.jar com.jngreen.mapreduce.test.WordCount /input/file1.txt /input/file2.txt /output/output
命令执行过程截图如下:
四、查看运行结果
查看hdfs输出路径/output下的结果,如下图所示:
运行结果为Hello 4、Hadoop 1、Man 1、Boy 1、Word 1,完全正确!
五、WordCount展示
源码如下:
- import java.io.IOException;
- import java.util.StringTokenizer;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- public class WordCount {
- // TokenizerMapper作为Map阶段,需要继承Mapper,并重写map()函数
- public static class TokenizerMapper
- extends Mapper<Object, Text, Text, IntWritable>{
- private final static IntWritable one = new IntWritable(1);
- private Text word = new Text();
- public void map(Object key, Text value, Context context
- ) throws IOException, InterruptedException {
- // 用StringTokenizer作为分词器,对value进行分词
- StringTokenizer itr = new StringTokenizer(value.toString());
- // 遍历分词后结果
- while (itr.hasMoreTokens()) {
- // 将String设置入Text类型word
- word.set(itr.nextToken());
- // 将(word,1),即(Text,IntWritable)写入上下文context,供后续Reduce阶段使用
- context.write(word, one);
- }
- }
- }
- // IntSumReducer作为Reduce阶段,需要继承Reducer,并重写reduce()函数
- public static class IntSumReducer
- extends Reducer<Text,IntWritable,Text,IntWritable> {
- private IntWritable result = new IntWritable();
- public void reduce(Text key, Iterable<IntWritable> values,
- Context context
- ) throws IOException, InterruptedException {
- int sum = 0;
- // 遍历map阶段输出结果中的values中每个val,累加至sum
- for (IntWritable val : values) {
- sum += val.get();
- }
- // 将sum设置入IntWritable类型result
- result.set(sum);
- // 通过上下文context的write()方法,输出结果(key, result),即(Text,IntWritable)
- context.write(key, result);
- }
- }
- public static void main(String[] args) throws Exception {
- // 加载hadoop配置
- Configuration conf = new Configuration();
- // 校验命令行输入参数
- if (args.length < 2) {
- System.err.println("Usage: wordcount <in> [<in>...] <out>");
- System.exit(2);
- }
- // 构造一个Job实例job,并命名为"word count"
- Job job = new Job(conf, "word count");
- // 设置jar
- job.setJarByClass(WordCount.class);
- // 设置Mapper
- job.setMapperClass(TokenizerMapper.class);
- // 设置Combiner
- job.setCombinerClass(IntSumReducer.class);
- // 设置Reducer
- job.setReducerClass(IntSumReducer.class);
- // 设置OutputKey
- job.setOutputKeyClass(Text.class);
- // 设置OutputValue
- job.setOutputValueClass(IntWritable.class);
- // 添加输入路径
- for (int i = 0; i < args.length - 1; ++i) {
- FileInputFormat.addInputPath(job, new Path(args[i]));
- }
- // 添加输出路径
- FileOutputFormat.setOutputPath(job,
- new Path(args[args.length - 1]));
- // 等待作业job运行完成并退出
- System.exit(job.waitForCompletion(true) ? 0 : 1);
- }
- }
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步