动态规划—triangle
题目:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is11(i.e., 2 + 3 + 5+ 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路:
题目的意思是找出从顶到底的最小路径和,类似二叉树。
从下向上进行,例如第i+1行的第j和j+1元素进行比较,将两元素中较小的值与第i行的第j个元素相加,以此类推,最后顶元素就是要求的最小路径和。
代码:
1 public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) { 2 int row = triangle.size(); 3 for(int i=row-2;i>=0;i--){ 4 for(int j=0;j<=i;j++){ 5 int min = Math.min(triangle.get(i+1).get(j), triangle.get(i+1).get(j+1)); 6 triangle.get(i).set(j, triangle.get(i).get(j)+min); 7 } 8 } 9 return triangle.get(0).get(0); 10 }
posted on 2017-08-31 15:45 一个不会coding的girl 阅读(168) 评论(0) 编辑 收藏 举报