摘要:
文章内容主要整理自Sinno Jialin Pan and Qiang Yang的论文《A survey on transfer Learning》。 1 迁移学习提出的背景及历史 1.1、迁移学习提出背景 在机器学习、深度学习和数据挖掘的大多数任务中,我们都会假设training和inferenc 阅读全文
摘要:
AutoEncoder作为NN里的一类模型,采用无监督学习的方式对高维数据进行高效的特征提取和特征表示,并且在学术界和工业界都大放异彩。本文主要介绍AutoEncoder系列模型框架的演进,旨在梳理AutoEncoder的基本原理。首先上图,然后再对他们进行逐一介绍。AutoEncoder的思想最早被提出来要追溯到1988年[1],当时的模型由于数据过于稀疏高维计算复杂度高很难优化,没能得到广泛的... 阅读全文
摘要:
经验模式分解(empirical mode decomposition, EMD)方法是Huang提出的,它是一种新的时频分析方法,而且是一种自适应的时频局部化分析方法:①IMF与采样频率相关;②它基于数据本身变化。这点是EMD优于傅立叶变换方法的地方,它摆脱了傅里叶变换的局限性。但EMD比较重要的缺点就是模态混叠,为了更好地解决这一问题,EEMD被Huang提出。 ... 阅读全文
摘要:
Photo by Pavel Anoshin on Unsplash Accompanying GitHub repository: https://github.com/BruceMacD/Adversarial-Faces Usage of facial recognition is on th 阅读全文
摘要:
梯度消失与梯度爆炸 梯度为偏导数构成的向量。 损失函数收敛至极小值时,梯度为0(接近0),损失函数不再下降。我们不希望在抵达极小值前,梯度就为0了,也不希望下降过程过于震荡,甚至不收敛。梯度消失与梯度爆炸分别对应这2种现象, 梯度消失(vanishing gradients):指的是在训练过程中,梯 阅读全文
摘要:
信息熵、交叉熵、KL散度、JS散度、Wasserstein距离交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵,发现自己对交叉熵的理解有些模糊,不够深入。遂花了几天的时间从头梳理了一下相关知识点,才算透彻的理解了,特地记... 阅读全文
摘要:
神经网络的前向传播和反向传播公式详细推导 本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。 对神经网络有些了解的人可能都 阅读全文
摘要:
1、什么是 softmax机器学习总归是要接触到 softmax 的,那么这个东东倒底是怎么来的呢?实际上 softmax 可能指两种相似但不相同的东东。1.1. softmax function这函数定义比较符合 softmax 这个名字:可见 softmax function 是从一个输入序列里算出一个值。可见 softmax 确实会返回输入序列中最大的那个值的近似值。softmax 是对真 ... 阅读全文
摘要:
1、However, but, yet, while, whereas 表转折的区别 表示转折关系的并列连词 however: 然而,不过。位置句首、句中,用逗号隔开;语气比but 弱,不直接引出相反意见。用作副词较常见。 I’d like to go with you, however, my h 阅读全文
摘要:
人有悲欢离合,月有阴晴圆缺。中秋佳节,为大家奉上一篇关于目标检测中“阴晴圆缺”不平衡的综述:Imbalance Problems in Object Detection: A Review (https://arxiv.org/abs/1909.00169, under review at TPAMI),同时也结合自己最近在这方面的 Tech Report: Is Sampling Heurist... 阅读全文