Android源码笔记——Camera系统架构
Camera的架构与Android系统的整体架构保持一致,如下图所示,本文主要从以下四个方面对其进行说明。
- Framework:Camera.java
- Android Runtime:android_hardware_Camera.cpp
- Library:Camera Client和Camera Service
- HAL:CameraHardwareInterface
一、Framework:Camera.java
Camera是应用层软件直接使用的类,涵盖了启动、预览、拍摄及关闭等操作摄像头的全部接口。Camera.java在Android源码中的路径为:framework/base/core/java/android/hardware。为了说明整个Camera系统的架构,这里暂不横向分析Camera.java的功能,下面从open()方法着手:
public static Camera open() { int numberOfCameras = getNumberOfCameras(); CameraInfo cameraInfo = new CameraInfo(); for (int i = 0; i < numberOfCameras; i++) { getCameraInfo(i, cameraInfo); if (cameraInfo.facing == CameraInfo.CAMERA_FACING_BACK) { return new Camera(i); } } return null; }
open()方法需要注意以下几点:
- getNumberOfCameras为native方法,实现在android_hardware_Camera.cpp中;
- CameraInfo是Camera定义的静态内部类,包含facing、orientation、canDisableShutterSound;
- getCameraInfo内部调用native方法_getCameraInfo获取摄像头信息;
- open()默认启动的是后置摄像头(CAMERA_FACING_BACK)。
/** used by Camera#open, Camera#open(int) */ Camera(int cameraId) { int err = cameraInitNormal(cameraId); if (checkInitErrors(err)) { switch(err) { case EACCESS: throw new RuntimeException("Fail to connect to camera service"); case ENODEV: throw new RuntimeException("Camera initialization failed"); default: // Should never hit this. throw new RuntimeException("Unknown camera error"); } } }
Camera构造器的核心实现在cameraInitNormal中,cameraInitNormal调用cameraInitVersion,并传入参数cameraId和CAMERA_HAL_API_VERSION_NORMAL_CONNECT,后者代表HAL的版本。
private int cameraInitVersion(int cameraId, int halVersion) {
……
String packageName = ActivityThread.currentPackageName(); return native_setup(new WeakReference<Camera>(this), cameraId, halVersion, packageName); }
cameraInitNormal调用本地方法native_setup(),由此进入到android_hardware_Camera.cpp中,native_setup()的签名如下:
private native final int native_setup(Object camera_this, int cameraId, int halVersion, String packageName);
二、Android Runtime:android_hardware_Camera.cpp
native_setup()被动态注册到JNI,通过JNI调用android_hardware_Camera_native_setup()方法。
static JNINativeMethod camMethods[] = { …… { "native_setup", "(Ljava/lang/Object;ILjava/lang/String;)V", (void*)android_hardware_Camera_native_setup } …… };
JNI的重点是android_hardware_Camera_native_setup()方法的实现:
// connect to camera service static jint android_hardware_Camera_native_setup(JNIEnv *env, jobject thiz, jobject weak_this, jint cameraId, jint halVersion, jstring clientPackageName) { // Convert jstring to String16 const char16_t *rawClientName = env->GetStringChars(clientPackageName, NULL); jsize rawClientNameLen = env->GetStringLength(clientPackageName); String16 clientName(rawClientName, rawClientNameLen); env->ReleaseStringChars(clientPackageName, rawClientName); sp<Camera> camera; if (halVersion == CAMERA_HAL_API_VERSION_NORMAL_CONNECT) { // Default path: hal version is don't care, do normal camera connect. camera = Camera::connect(cameraId, clientName, Camera::USE_CALLING_UID); } else { jint status = Camera::connectLegacy(cameraId, halVersion, clientName, Camera::USE_CALLING_UID, camera); if (status != NO_ERROR) { return status; } } if (camera == NULL) { return -EACCES; } // make sure camera hardware is alive if (camera->getStatus() != NO_ERROR) { return NO_INIT; } jclass clazz = env->GetObjectClass(thiz); if (clazz == NULL) { // This should never happen jniThrowRuntimeException(env, "Can't find android/hardware/Camera"); return INVALID_OPERATION; } // We use a weak reference so the Camera object can be garbage collected. // The reference is only used as a proxy for callbacks. sp<JNICameraContext> context = new JNICameraContext(env, weak_this, clazz, camera); context->incStrong((void*)android_hardware_Camera_native_setup); camera->setListener(context); // save context in opaque field env->SetLongField(thiz, fields.context, (jlong)context.get()); return NO_ERROR; }
android_hardware_Camera_native_setup()方法通过调用Camera::connect()方法请求连接CameraService服务。入参中:
- clientName是通过将clientPackageName从jstring转换为String16格式得到;
- Camera::USE_CALLING_UID是定义在Camera.h中的枚举类型,其值为ICameraService::USE_CALLING_UID(同样为枚举类型,值为-1)。
Camera::connect()位于Camera.cpp中,由此进入到Library层。
三、Library:Camera Client和Camera Service
如上述架构图中所示,ICameraService.h、ICameraClient.h和ICamera.h三个类定义了Camera的接口和架构,ICameraService.cpp和Camera.cpp两个文件用于Camera架构的实现,Camera的具体功能在下层调用硬件相关的接口来实现。Camera.h是Camera系统对上层的接口。
具体的,Camera类继承模板类CameraBase,Camera::connect()调用了CameraBase.cpp中的connect()方法。
sp<Camera> Camera::connect(int cameraId, const String16& clientPackageName, int clientUid) { return CameraBaseT::connect(cameraId, clientPackageName, clientUid); }
CameraBase实际上又继承了IBinder的DeathRecipient内部类,DeathRecipient虚拟继承自RefBase。RefBase是Android中的引用计数基础类,其中定义了incStrong、decStrong、incWeak和decWeak等涉及sp/wp的指针操作函数,当然这扯远了。
template <typename TCam> struct CameraTraits { }; template <typename TCam, typename TCamTraits = CameraTraits<TCam> > class CameraBase : public IBinder::DeathRecipient { public: static sp<TCam> connect(int cameraId, const String16& clientPackageName, int clientUid); …… }
class DeathRecipient : public virtual RefBase { public: virtual void binderDied(const wp<IBinder>& who) = 0; };
回到Camera::connect()的实现上,其中,new TCam(cameraId)生成BnCameraClient对象,BnCameraClient定义在ICameraClient.h文件中,继承自模板类BnInterface。getCameraService()方法返回CameraService的服务代理BpCameraService,BpCameraService同样继承自模板类BnInterface。然后通过Binder通信发送CONNECT命令,当BnCameraService收到CONNECT命令后调用CameraService的connect()成员函数来做相应的处理。
template <typename TCam, typename TCamTraits> sp<TCam> CameraBase<TCam, TCamTraits>::connect(int cameraId, const String16& clientPackageName, int clientUid) { ALOGV("%s: connect", __FUNCTION__); sp<TCam> c = new TCam(cameraId); // BnCameraClient sp<TCamCallbacks> cl = c; status_t status = NO_ERROR; const sp<ICameraService>& cs = getCameraService(); // BpCameraService if (cs != 0) { TCamConnectService fnConnectService = TCamTraits::fnConnectService; status = (cs.get()->*fnConnectService)(cl, cameraId, clientPackageName, clientUid, /*out*/ c->mCamera); } if (status == OK && c->mCamera != 0) { c->mCamera->asBinder()->linkToDeath(c); c->mStatus = NO_ERROR; } else { ALOGW("An error occurred while connecting to camera: %d", cameraId); c.clear(); } return c; }
class BnCameraClient: public BnInterface<ICameraClient> { public: virtual status_t onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags = 0); };
class BpCameraService: public BpInterface<ICameraService> { public: BpCameraService(const sp<IBinder>& impl) : BpInterface<ICameraService>(impl) { } …… }
注:connect()函数在BpCameraService和BnCameraService的父类ICameraService中声明为纯虚函数,在BpCameraService和CameraService中分别给出了实现,BpCameraService作为代理类,提供接口给客户端,真正实现在BnCameraService的子类CameraService中。
在BpCameraService中,connect()函数实现如下:
// connect to camera service (android.hardware.Camera) virtual status_t connect(const sp<ICameraClient>& cameraClient, int cameraId, const String16 &clientPackageName, int clientUid, /*out*/ sp<ICamera>& device) { Parcel data, reply; data.writeInterfaceToken(ICameraService::getInterfaceDescriptor()); data.writeStrongBinder(cameraClient->asBinder()); data.writeInt32(cameraId); data.writeString16(clientPackageName); data.writeInt32(clientUid); remote()->transact(BnCameraService::CONNECT, data, &reply); // BpBinder的transact()函数向IPCThreadState实例发送消息,通知其有消息要发送给binder driver
if (readExceptionCode(reply)) return -EPROTO; status_t status = reply.readInt32(); if (reply.readInt32() != 0) { device = interface_cast<ICamera>(reply.readStrongBinder()); // client端读出server返回的bind } return status; }
首先将传递过来的Camera对象cameraClient转换成IBinder类型,将调用的参数写到Parcel(可理解为Binder通信的管道)中,通过BpBinder的transact()函数发送消息,然后由BnCameraService去响应该连接,最后就是等待服务端返回,如果成功则生成一个BpCamera实例。
真正的服务端响应实现在BnCameraService的onTransact()函数中,其负责解包收到的Parcel并执行client端的请求的方法。
status_t BnCameraService::onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { switch(code) {
…… case CONNECT: { CHECK_INTERFACE(ICameraService, data, reply); sp<ICameraClient> cameraClient = interface_cast<ICameraClient>(data.readStrongBinder()); // 使用Camera的Binder对象生成Camera客户代理BpCameraClient实例 int32_t cameraId = data.readInt32(); const String16 clientName = data.readString16(); int32_t clientUid = data.readInt32(); sp<ICamera> camera; status_t status = connect(cameraClient, cameraId, clientName, clientUid, /*out*/camera); // 将生成的BpCameraClient对象作为参数传递到CameraService的connect()函数中 reply->writeNoException(); reply->writeInt32(status); // 将BpCamera对象以IBinder的形式打包到Parcel中返回 if (camera != NULL) { reply->writeInt32(1); reply->writeStrongBinder(camera->asBinder()); } else { reply->writeInt32(0); } return NO_ERROR; } break; …… } }
主要的处理包括:
- 通过data中Camera的Binder对象生成Camera客户代理BpCameraClient实例;
- 将生成的BpCameraClient对象作为参数传递到CameraService(/frameworks/av/services/camera /libcameraservice/CameraService.cpp)的connect()函数中,该函数会返回一个BpCamera实例;
- 将在上述实例对象以IBinder的形式打包到Parcel中返回。
最后,BpCamera实例是通过CameraService::connect()函数返回的。CameraService::connect()实现的核心是调用connectHelperLocked()函数根据HAL不同API的版本创建不同的client实例(早期版本中好像没有connectHelperLocked()这个函数,但功能基本相似)。
status_t CameraService::connectHelperLocked( /*out*/ sp<Client>& client, /*in*/ const sp<ICameraClient>& cameraClient, int cameraId, const String16& clientPackageName, int clientUid, int callingPid, int halVersion, bool legacyMode) { int facing = -1; int deviceVersion = getDeviceVersion(cameraId, &facing); if (halVersion < 0 || halVersion == deviceVersion) { // Default path: HAL version is unspecified by caller, create CameraClient // based on device version reported by the HAL. switch(deviceVersion) { case CAMERA_DEVICE_API_VERSION_1_0: client = new CameraClient(this, cameraClient, clientPackageName, cameraId, facing, callingPid, clientUid, getpid(), legacyMode); break; case CAMERA_DEVICE_API_VERSION_2_0: case CAMERA_DEVICE_API_VERSION_2_1: case CAMERA_DEVICE_API_VERSION_3_0: case CAMERA_DEVICE_API_VERSION_3_1: case CAMERA_DEVICE_API_VERSION_3_2: client = new Camera2Client(this, cameraClient, clientPackageName, cameraId, facing, callingPid, clientUid, getpid(), legacyMode); break; case -1: ALOGE("Invalid camera id %d", cameraId); return BAD_VALUE; default: ALOGE("Unknown camera device HAL version: %d", deviceVersion); return INVALID_OPERATION; } } else { // A particular HAL version is requested by caller. Create CameraClient // based on the requested HAL version. if (deviceVersion > CAMERA_DEVICE_API_VERSION_1_0 && halVersion == CAMERA_DEVICE_API_VERSION_1_0) { // Only support higher HAL version device opened as HAL1.0 device. client = new CameraClient(this, cameraClient, clientPackageName, cameraId, facing, callingPid, clientUid, getpid(), legacyMode); } else { // Other combinations (e.g. HAL3.x open as HAL2.x) are not supported yet. ALOGE("Invalid camera HAL version %x: HAL %x device can only be" " opened as HAL %x device", halVersion, deviceVersion, CAMERA_DEVICE_API_VERSION_1_0); return INVALID_OPERATION; } } status_t status = connectFinishUnsafe(client, client->getRemote()); if (status != OK) { // this is probably not recoverable.. maybe the client can try again return status; } mClient[cameraId] = client; LOG1("CameraService::connect X (id %d, this pid is %d)", cameraId, getpid()); return OK; }
可见,在CAMERA_DEVICE_API_VERSION_2_0之前使用CameraClient进行实例化,之后则采用Camera2Client进行实例化。以CameraClient为例,其initialize()函数如下:
status_t CameraClient::initialize(camera_module_t *module) { int callingPid = getCallingPid(); status_t res; LOG1("CameraClient::initialize E (pid %d, id %d)", callingPid, mCameraId); // Verify ops permissions res = startCameraOps(); if (res != OK) { return res; } char camera_device_name[10]; snprintf(camera_device_name, sizeof(camera_device_name), "%d", mCameraId); mHardware = new CameraHardwareInterface(camera_device_name); res = mHardware->initialize(&module->common); if (res != OK) { ALOGE("%s: Camera %d: unable to initialize device: %s (%d)", __FUNCTION__, mCameraId, strerror(-res), res); mHardware.clear(); return res; } mHardware->setCallbacks(notifyCallback, dataCallback, dataCallbackTimestamp, (void *)(uintptr_t)mCameraId); // Enable zoom, error, focus, and metadata messages by default enableMsgType(CAMERA_MSG_ERROR | CAMERA_MSG_ZOOM | CAMERA_MSG_FOCUS | CAMERA_MSG_PREVIEW_METADATA | CAMERA_MSG_FOCUS_MOVE); LOG1("CameraClient::initialize X (pid %d, id %d)", callingPid, mCameraId); return OK; }
上述函数中,主要注意以下流程:
- 加粗的代码CameraHardwareInterface新建了了一个Camera硬件接口,当然,camera_device_name为摄像头设备名;
- mHardware->initialize(&module->common)调用底层硬件的初始化方法;
- mHardware->setCallbacks将CamerService处的回调函数注册到HAL处。
CameraHardwareInterface定义了Camera的硬件抽象特征,由此进入到HAL。
四、HAL:CameraHardwareInterface
CameraHardwareInterface的作用在于链接Camera Server和V4L2,通过实现CameraHardwareInterface可以屏蔽不同的driver对Camera Server的影响。CameraHardwareInterface同样虚拟继承自RefBase。
class CameraHardwareInterface : public virtual RefBase { public: CameraHardwareInterface(const char *name) { mDevice = 0; mName = name; } …… }
CameraHardwareInterface中包含了控制通道和数据通道,控制通道用于处理预览和视频获取的开始/停止、拍摄照片、自动对焦等功能,数据通道通过回调函数来获得预览、视频录制、自动对焦等数据。当需要支持新的硬件时就需要继承于CameraHardwareInterface ,来实现对应的功能。CameraHardwareInterface提供的public方法如下:
在前一节中,initialize()函数调用了mHardware->initialize和mHardware->setCallbacks,下面来看下CameraHardwareInterface.h对其的实现。
status_t initialize(hw_module_t *module) { ALOGI("Opening camera %s", mName.string()); camera_module_t *cameraModule = reinterpret_cast<camera_module_t *>(module); camera_info info; status_t res = cameraModule->get_camera_info(atoi(mName.string()), &info); if (res != OK) return res; int rc = OK; if (module->module_api_version >= CAMERA_MODULE_API_VERSION_2_3 && info.device_version > CAMERA_DEVICE_API_VERSION_1_0) { // Open higher version camera device as HAL1.0 device. rc = cameraModule->open_legacy(module, mName.string(), CAMERA_DEVICE_API_VERSION_1_0, (hw_device_t **)&mDevice); } else { rc = CameraService::filterOpenErrorCode(module->methods->open( module, mName.string(), (hw_device_t **)&mDevice)); } if (rc != OK) { ALOGE("Could not open camera %s: %d", mName.string(), rc); return rc; } initHalPreviewWindow(); return rc; }
在initialize()方法中,通过cameraModule->open_legacy打开摄像头模组,initHalPreviewWindow()用于初始化Preview的相关流opspreview_stream_ops,初始化hal的预览窗口。
void initHalPreviewWindow() { mHalPreviewWindow.nw.cancel_buffer = __cancel_buffer; mHalPreviewWindow.nw.lock_buffer = __lock_buffer; mHalPreviewWindow.nw.dequeue_buffer = __dequeue_buffer; mHalPreviewWindow.nw.enqueue_buffer = __enqueue_buffer; mHalPreviewWindow.nw.set_buffer_count = __set_buffer_count; mHalPreviewWindow.nw.set_buffers_geometry = __set_buffers_geometry; mHalPreviewWindow.nw.set_crop = __set_crop; mHalPreviewWindow.nw.set_timestamp = __set_timestamp; mHalPreviewWindow.nw.set_usage = __set_usage; mHalPreviewWindow.nw.set_swap_interval = __set_swap_interval; mHalPreviewWindow.nw.get_min_undequeued_buffer_count = __get_min_undequeued_buffer_count; }
/** Set the notification and data callbacks */ void setCallbacks(notify_callback notify_cb, data_callback data_cb, data_callback_timestamp data_cb_timestamp, void* user) { mNotifyCb = notify_cb; mDataCb = data_cb; mDataCbTimestamp = data_cb_timestamp; mCbUser = user; ALOGV("%s(%s)", __FUNCTION__, mName.string()); if (mDevice->ops->set_callbacks) { mDevice->ops->set_callbacks(mDevice, __notify_cb, __data_cb, __data_cb_timestamp, __get_memory, this); } }
以上通过简略分析应用层调用Camera.open()之后在Framework、ART、Library以及HAL层的响应,来说明Android中Camera系统的整体架构,希望对读者能有一定的帮助,后续将在理解Camera整体架构的基础,探索更加高效的Preview方式,敬请期待!