实验6:开源控制器实践——Ryu

一、完成Ryu控制器的安装。

二、 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器。

  • 搭建拓扑
    sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10

  • 连接Ryu控制器
    ryu-manager ryu/ryu/app/gui_topology/gui_topology.py --observe-links

三、通过Ryu的图形界面查看网络拓扑。

四、阅读Ryu文档的The First Application一节,运行并使用 tcpdump 验证L2Switch,分析和POX的 Hub模块有何不同。

  • h1 ping h2

  • h1 ping h3

  • 与POX的Hub模块区别
    L2Switch的实现是于Hub类似集线器的广播形式发送ICMP报文,h1 ping h2/h3时,h1发送给h2/h3的ICMP报文,h3/h2也会收到。

进阶要求

一、阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例, 完成其代码的注释工作,并回答下列问题:

  • simple_switch_13.py代码及注释:
# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#引入所需使用的包
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp): 
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] #标明OpenFlow版本,这里为1.3版本。

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        self.mac_to_port = {}  #self.mac_to_port保存mac地址到转发端口。

    #对EventOFPSwitchFeatures事件的处理
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # install table-miss flow entry
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch() #match指流表项匹配
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions) #add_flow是添加流表项的函数,本函数的目的即为下发流表。


	 #add_flow()为增加流表项函数;
	  #datapath,priority,match,actions,buffer_id为参数;
          #此流表项匹配成功后应立即执行所规定的动作。
    def add_flow(self, datapath, priority, match, actions, buffer_id=None):
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst)
        datapath.send_msg(mod)
        
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len: #传输出错
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        dst = eth.dst
        src = eth.src #用字典分析数据包

        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {}) 

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = in_port #交换机自学习

        if dst in self.mac_to_port[dpid]: #如表中有出端口信息,指示出端口
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD

        actions = [parser.OFPActionOutput(out_port)]

        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data
	#发送Packet_out数据包 带上交换机发来的数据包的信息
        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        #发流表
        datapath.send_msg(out)

a) 代码当中的mac_to_port的作用是什么?
答:保存mac地址到交换机端口的映射,为交换机自学习功能提供数据结构进行mac端口的存储。

b) simple_switch和simple_switch_13在dpid的输出上有何不同?
答:simple_switch_13会在前端加上0填充至16位,simple_switch则直接输出dpid。

c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?
答:交换机以特性应答消息响应特性请求。

d) simple_switch_13是如何实现流规则下发的?
答:通过构造流表项,判断其中参数和信息来实现流规则下发。

e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?
答:前者发送的流规则优先级更高(0)。

实验总结

个人总结与想法

实验难度适中,最开始安装Ryu时很快安装完成,但不懂怎么检测浪费时间反复装了几遍。除进阶外的其他任务和第五次相比,操作不能说一摸一样只能说完全相同。进阶这块的代码注释确实不愧进阶之名,耗时颇多。阅读代码时的问题和困难都有所借鉴才完成,个个都是大佬,又能说会道,互联网实在是太精彩啦。

困难与解决方法

1.检测Ryu安装就直接查看版本命令就行了(ryu --version)

2.开始建立简拓扑无法ping通,后来发现链接ryu之后就可以了

3.进阶任务的代码注释个别不理解,发现有时候个别单词英译中一下就可能会有一点思路

posted @ 2021-10-12 17:37  楚御  阅读(141)  评论(0编辑  收藏  举报