深度优先遍历和广度优先遍历

1.时间复杂度

对于图,深度优先搜索的时间复杂度和广度优先搜索的时间复杂度是一样的,邻接矩阵存储为O(n^2), 邻接表存储为O(n+e) ;

对于树,深度优先搜索的时间复杂度和广度优先搜索的时间复杂度是一样的,都是O(V),V是树的节点数。

2.基于树的 代码实现

 1 public class DepthFirstTraversal {
 2     public static void main(String[] args) {
 3         TreeNode root = new TreeNode(1);
 4         root.left = new TreeNode(2);
 5         root.right = new TreeNode(3);
 6         root.left.left = new TreeNode(4);
 7         root.left.right = new TreeNode(5);
 8         root.right.left = new TreeNode(6);
 9         root.right.right = new TreeNode(7);
10 //        preOrderTraverse2(root);
11         levelTraverse(root);
12     }
13 //    1.先序遍历 递归实现
14     public static void preOrderTraverse1(TreeNode root){
15         if(root==null)return;
16         System.out.print(root.val+" ");
17         preOrderTraverse1(root.left);
18         preOrderTraverse1(root.right);
19     }
20 //    2.先序遍历 非递归实现---栈
21     public static void preOrderTraverse2(TreeNode root) {
22         if(root==null)return;
23         Stack<TreeNode> stack = new Stack<>();
24         stack.push(root);
25         while(!stack.isEmpty()){
26             TreeNode node = stack.pop();
27             System.out.print(node.val+" ");
28             if(node.right!=null) stack.push(node.right);
29             if(node.left!=null) stack.push(node.left);
30         }
31     }
32 //    3.层次遍历
33     public static void levelTraverse(TreeNode root) {
34         if(root==null) return;
35         LinkedList<TreeNode> queue = new LinkedList<>();
36         queue.offer(root);
37         while(!queue.isEmpty()){
38             TreeNode node = queue.poll();
39             System.out.print(node.val+" ");
40             if(node.left!=null) queue.offer(node.left);
41             if (node.right!=null) queue.offer(node.right);
42         }
43     }
44 }

 

posted @ 2020-05-18 11:44  藤原拓海7  阅读(696)  评论(0编辑  收藏  举报