5.2 将值类型尽可能实现为具有常量性和原子性的类型
具有常量性的类型很简单:
- 如果构造的时候验证了参数的有效性,之后就一直有效;
- 省去了许多错误检查,因为禁止更改;
- 确保线程安全,因为多个reader访问到同样的内容;
- 可以安全地暴露给外界,因为调用者不能更改对象的内部状态。
具有原子性的类型都是单一的实体,我们通常会直接替换一个原子类型的整个内容。
下面是一个典型的可变类型:
{
private string _city;
private string _province;
private int _zipCode;
public string City
{
get { return _city; }
set { _city = value; }
}
public string Province
{
get { return _province; }
set
{
ValidateProvince(value);
_province = value;
}
}
public int ZipCode
{
get { return _zipCode; }
set
{
ValidateZipCode(value);
_zipCode = value;
}
}
}
下面创建一个实例:
address.City = "Chengdu";
address.Province = "Sichuan";
address.ZipCode = 610000;
然后更改这个实例:
address.ZipCode = 210000; //Now Province is still invalid
address.Province = "Jiangsu";
可见,内部状态的改变意味着可能违反对象的不变式(invariant),至少是临时的违反。如果上面是一个多线程的程序,那么在 City更改的过程中,另一个线程可能看到不一致的数据视图。如果不是多线程的程序,也有问题:
- 当ZipCode的值无效而抛出异常时,对象仅作了一部分改变,因此处于无效的状态,为了修复这个问题,需要在Address中添加相当多的内部校验代码;
- 为了实现异常安全,我们需要在所有改变多个字段的客户代码处放上防御性的代码;
- 线程安全也要求我们在每一个属性的访问器上添加线程同步检查。
显然,这是一个相当可观的工作量。下面我们把Address实现为常量类型:
{
private string _city;
private string _province;
private int _zipCode;
public Address (string city, string province, int zipCode)
{
_city = city;
_province = province;
_zipCode = zipCode;
ValidateProvince(province);
ValidateZipCode(zipCode);
}
public string City
{
get { return _city; }
}
public string Province
{
get { return _province; }
}
public int ZipCode
{
get { return _zipCode; }
}
}
如果要改变Address,不能修改现有的实例,只能创建一个新的实例:
address = new Address("Nanjing", "Jiangsu", 210000);//modify the instance
address将不存在任何无效的临时状态。那些临时状态只存在于Address的构造函数执行过程中。这样一来,Address是异常安全的,也是线程安全的。
5.3 确保0为值类型的有效状态
.NET的默认初始化机制会将引用类型设置为二进制意义上的0,即null。而对于值类型,不论我们是否提供构造函数,都会有一个默认的构造函数,将其设置为0。
一种典型的情况是枚举:
{
Male = 1;
Female = 2;
}
然后用做值类型的成员:
{
private Sex _sex;
//other
}
创建Employee结构体将得到一个无效的Sex字段:
employee的_sex是无效的,因为其为0。我们应该将0作为一个为初始化的值明确表示出来:
{
None = 0;
Male = 1;
Female = 2;
}
如果值类型中包含引用类型,会出现另一种初始化问题:
{
private string _message;
//other
}
然后创建一个ErrorLog:
errorLog的_message字段将是一个空引用。我们应该通过一个属性来将_message暴露给客户代码,从而使该问题限定在ErrorLog 的内部:
{
private string _message;
public string Message
{
get
{
return (_message ! = null) ? _message : string.Empty;
}
set { _message = value; }
}
//other
}
5.4 尽量减少装箱和拆箱
装箱指把一个值类型放入一个未具名类型的引用类型中,比如:
object referenceType = i;//boxing
拆箱则是从前面的装箱对象中取出值类型:
int valueType = (int)referenceType;//unboxing
装箱和拆箱是比较耗费性能的,还会引入一些诡异的bug,我们应当避免装箱和拆箱。
装箱和拆箱最大的问题是会自动发生。比如:
其中,Console.WriteLine()接收的参数类型是(string,object,object)。因此,实际上会执行以下操作:
obeject o = i;//boxing
然后把o传给WriteLine()方法。在WriteLine()方法的内部,为了调用i上的ToString()方法,又会执行:
string output = i,ToString();
所以正确的做法应该是:
25.ToString()只是执行一个方法并返回一个引用类型,不存在装箱/拆箱的问题。
另一个典型的例子是ArryList的使用:
{
private string _name;
public Employee(string name)
{
_name = name;
}
public string Name
{
get { return _name; }
set { _name = value; }
}
public override string ToString()
{
return _name;
}
}
ArrayList employees = new ArrayList();
employees.Add(new Employee("Old Name"));//boxing
Employee ceo = (Employee)employees[0];//unboxing
ceo.Name = "New Name";//employees[0].ToString() is still "Old Name"
上面的代码不仅存在性能的问题,还容易导致错误发生。
在这种情况下,更好的做法是使用泛型集合:
由于List<T>是强类型的集合,employees.Add()方法不进行类型转换,所以不存在装箱/拆箱的问题。
6. 总结
数组的元素,不管是引用类型还是值类型,都存储在托管堆上。
引用类型在栈中存储一个引用,其实际的存储位置位于托管堆。为了方便,本文简称引用类型部署在托管推上。
值类型总是分配在它声明的地方:作为字段时,跟随其所属的变量(实例)存储;作为局部变量时,存储在栈上。
应该尽可能地减少装箱和拆箱。