人工智能——CNN卷积神经网络项目之猫狗分类
首先先导入所需要的库
import sys
from matplotlib import pyplot
from tensorflow.keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from tensorflow.keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
定义训练模型
model=Sequential()
model.add(Con2D(filters=32,kernal_size=(3,3),padding='same',activation='relu'),input_shape=(32,32,3))#卷积层
model.add(MaxPooling2D(kernal_size=(2,2)))#池化层
model.add(Flatten())#展平
model.add(Dense(units=64,activation='relu'))#全连接层
model.add(Dense(units=1,activation='sigmoid'))#全连接层(里面的激活函数常用sigmoid,该函数常用于二值交叉熵函数)
opt = SGD(lr=0.001, momentum=0.9)
model.compile(optimizer=opt,loss='binary_crossentropy',metrics=['accuracy'])#编译模型
定义生成图片函数
# 创建图片生成器
datagen = ImageDataGenerator(rescale=1.0 / 255.0)
train_it = datagen.flow_from_directory(".\\train\\",class_mode='binary',batch_size=64,target_size=(200, 200))
训练模型
# 训练模型
model.fit(train_it,steps_per_epoch=len(train_it),epochs=1,verbose=1)
这样就完成了对猫狗分类数据集的训练,这是最简单的CNN卷积神经网络,准确率能达到93%,算是一个比较好的神经网络
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下