CAS原理分析

在JDK 5之前Java语言是靠synchronized关键字保证同步的,这会导致有锁(后面的章节还会谈到锁)。

锁机制存在以下问题:

(1)在多线程竞争下,加锁、释放锁会导致比较多的上下文切换和调度延时,引起性能问题。

(2)一个线程持有锁会导致其它所有需要此锁的线程挂起。

(3)如果一个优先级高的线程等待一个优先级低的线程释放锁会导致优先级倒置,引起性能风险。

volatile是不错的机制,但是volatile不能保证原子性。因此对于同步最终还是要回到锁机制上来。

独占锁是一种悲观锁,synchronized就是一种独占锁,会导致其它所有需要锁的线程挂起,等待持有锁的线程释放锁。而另一个更加有效的锁就是乐观锁。所谓乐观锁就是,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。

CAS 操作

上面的乐观锁用到的机制就是CAS,Compare and Swap。

CAS有3个操作数,内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则什么都不做。

非阻塞算法 (nonblocking algorithms)

一个线程的失败或者挂起不应该影响其他线程的失败或挂起的算法。

现代的CPU提供了特殊的指令,可以自动更新共享数据,而且能够检测到其他线程的干扰,而 compareAndSet() 就用这些代替了锁定。

拿出AtomicInteger来研究在没有锁的情况下是如何做到数据正确性的。

private volatile int value;

首先毫无以为,在没有锁的机制下可能需要借助volatile原语,保证线程间的数据是可见的(共享的)。这样才获取变量的值的时候才能直接读取。

public final int get() {
        return value;
    }

然后来看看++i是怎么做到的。

public final int incrementAndGet() {
    for (;;) {
        int current = get();
        int next = current + 1;
        if (compareAndSet(current, next))
            return next;
    }
}

在这里采用了CAS操作,每次从内存中读取数据然后将此数据和+1后的结果进行CAS操作,如果成功就返回结果,否则重试直到成功为止。

而compareAndSet利用JNI来完成CPU指令的操作。

public final boolean compareAndSet(int expect, int update) {   
    return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

整体的过程就是这样子的,利用CPU的CAS指令,同时借助JNI来完成Java的非阻塞算法。其它原子操作都是利用类似的特性完成的。

而整个J.U.C都是建立在CAS之上的,因此对于synchronized阻塞算法,J.U.C在性能上有了很大的提升。

CAS看起来很爽,但是会导致“ABA问题”。

CAS算法实现一个重要前提需要取出内存中某时刻的数据,而在下时刻比较并替换,那么在这个时间差类会导致数据的变化。

比如说一个线程one从内存位置V中取出A,这时候另一个线程two也从内存中取出A,并且two进行了一些操作变成了B,然后two又将V位置的数据变成A,这时候线程one进行CAS操作发现内存中仍然是A,然后one操作成功。尽管线程one的CAS操作成功,但是不代表这个过程就是没有问题的。如果链表的头在变化了两次后恢复了原值,但是不代表链表就没有变化。因此前面提到的原子操作AtomicStampedReference/AtomicMarkableReference就很有用了。这允许一对变化的元素进行原子操作。

===================================================

总结:CAS是硬件CPU提供的元语,它的原理:我认为位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。

Java并发库中的AtomicXXX类均是基于这个元语的实现,以AtomicInteger为例:

publicfinalint incrementAndGet() {
for (;;) {
int current = get();
int next = current +1;
if (compareAndSet(current, next))
return next;
}
}

publicfinalboolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}

其中,unsafe.compareAndSwapInt()是一个native方法,正是调用CAS元语完成该操作。

CAS缺点

 CAS虽然很高效的解决原子操作,但是CAS仍然存在三大问题。ABA问题,循环时间长开销大和只能保证一个共享变量的原子操作

1.  ABA问题。因为CAS需要在操作值的时候检查下值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加一,那么A-B-A 就会变成1A-2B-3A。

从Java1.5开始JDK的atomic包里提供了一个类AtomicStampedReference来解决ABA问题。这个类的compareAndSet方法作用是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

关于ABA问题参考文档: http://blog.hesey.net/2011/09/resolve-aba-by-atomicstampedreference.html

2. 循环时间长开销大。自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。如果JVM能支持处理器提供的pause指令那么效率会有一定的提升,pause指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起CPU流水线被清空(CPU pipeline flush),从而提高CPU的执行效率。

 

3. 只能保证一个共享变量的原子操作。当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁,或者有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java1.5开始JDK提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行CAS操作。

 

 

concurrent包的实现

由于java的CAS同时具有 volatile 读和volatile写的内存语义,因此Java线程之间的通信现在有了下面四种方式:

  1. A线程写volatile变量,随后B线程读这个volatile变量。
  2. A线程写volatile变量,随后B线程用CAS更新这个volatile变量。
  3. A线程用CAS更新一个volatile变量,随后B线程用CAS更新这个volatile变量。
  4. A线程用CAS更新一个volatile变量,随后B线程读这个volatile变量。

Java的CAS会使用现代处理器上提供的高效机器级别原子指令,这些原子指令以原子方式对内存执行读-改-写操作,这是在多处理器中实现同步的关键(从本质上来说,能够支持原子性读-改-写指令的计算机器,是顺序计算图灵机的异步等价机器,因此任何现代的多处理器都会去支持某种能对内存执行原子性读-改-写操作的原子指令)。同时,volatile变量的读/写和CAS可以实现线程之间的通信。把这些特性整合在一起,就形成了整个concurrent包得以实现的基石。如果我们仔细分析concurrent包的源代码实现,会发现一个通用化的实现模式:

  1. 首先,声明共享变量为volatile;
  2. 然后,使用CAS的原子条件更新来实现线程之间的同步;
  3. 同时,配合以volatile的读/写和CAS所具有的volatile读和写的内存语义来实现线程之间的通信。

AQS,非阻塞数据结构和原子变量类(java.util.concurrent.atomic包中的类),这些concurrent包中的基础类都是使用这种模式来实现的,而concurrent包中的高层类又是依赖于这些基础类来实现的。从整体来看,concurrent包的实现示意图如下:

 

 
 
posted @ 2018-06-05 10:09  煮海焚天  阅读(1181)  评论(0编辑  收藏  举报