HDU 5171

这道题本来很水,以前做过一样的,斐波那契数列,用矩阵快速幂的方法求,本来很水,以前做过很多次,为毛做的时候没想到T_T

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#define LL __int64
using namespace std;

const LL MOD=10000007;
int a[100005];

struct Matrix{
	LL p[2][2];
};
Matrix per,s;

LL tmp[2];

Matrix operator *(Matrix a,Matrix b){
	Matrix c;
	for(int i=0;i<2;i++){
		for(int j=0;j<2;j++){
			c.p[i][j]=0;
			for(int k=0;k<2;k++)
			c.p[i][j]=(c.p[i][j]+a.p[i][k]*b.p[k][j])%MOD;
		}
	}
	return c;
}

Matrix cal_quick(int k){
	Matrix ans=per,p=s;
	while(k){
		if(k&1)
		ans=ans*p;
		k>>=1;
		p=p*p;
	}
	return ans;
}

int main(){
	per.p[0][0]=per.p[1][1]=1;
	per.p[0][1]=per.p[1][0]=0;
	s.p[0][0]=s.p[0][1]=s.p[1][0]=1;
	s.p[1][1]=0;
	int n,k;
	LL first,second,pos;
	LL ans;
	while(scanf("%d%d",&n,&k)!=EOF){
		ans=0; first=second=pos=-1;
		for(int i=0;i<n;i++){
			scanf("%I64d",&a[i]);
			ans=(ans+a[i])%MOD;
			if(a[i]>first){
				first=a[i]; pos=i;
			}
		}
		ans-=first;
		for(int i=0;i<n;i++){
			if(pos!=i&&second<a[i])
			second=a[i];
		}
		tmp[0]=1;tmp[1]=0;
		Matrix one=cal_quick(k+1);
		LL ans_a=(one.p[0][0]*tmp[0]+one.p[0][1]*tmp[1])%MOD;
		ans=((ans+((ans_a-1)*second)%MOD)%MOD+MOD)%MOD;
		one=one*s;
		ans_a=(one.p[0][0]*tmp[0]+one.p[0][1]*tmp[1])%MOD;
		ans=((ans+((ans_a-1)*first)%MOD)%MOD+MOD)%MOD;
		printf("%I64d\n",ans);
	}
	return 0;
}

  

posted @ 2015-02-08 14:32  chenjunjie1994  阅读(164)  评论(0编辑  收藏  举报