POJ 3528

三维凸包

/*
增量法求凸包。选取一个四面体,同时把它各面的方向向量向外,增加一个点时,若该点与凸包上的某些面的方
向向量在同一侧,则去掉那些面,并使某些边与新增点一起连成新的凸包上的面。 
*/ 

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>

using namespace std;
const int MAXN=550;
const double eps=1e-8;
struct point {
	double x,y,z;
};
struct face {
	int a,b,c;
	bool ok;
};
int n;  //初始点数 
point p[MAXN]; //空间点
int trianglecnt; //凸包上三角形数
face tri[6*MAXN]; //凸包上被创建的三角形
int vis[MAXN][MAXN]; //点i到点j是属于哪一个三角形。此处是有方向

point operator -(const point &x, const point &y){
	point ret;
	ret.x=x.x-y.x; ret.y=x.y-y.y; ret.z=x.z-y.z;
	return ret;
}

point operator * (const point &u,const point &v){  //叉积 
	point ret;
	ret.x=u.y*v.z-u.z*v.y;
	ret.y=u.z*v.x-u.x*v.z;
	ret.z=u.x*v.y-u.y*v.x;
	return ret;
}

double  operator ^(const point &u,const point &v){
	return (u.x*v.x+u.y*v.y+u.z*v.z);
}

double dist(point t){
	return sqrt(t.x*t.x+t.y*t.y+t.z*t.z);
}

double ptoplane(point &tmp,face &f){    //若结果大于0,证明点面的同向,即法向量方向 
	point m=p[f.b]-p[f.a]; point n=p[f.c]-p[f.a];
	point t=tmp-p[f.a];
	return (m*n)^t;
}

double farea(point a,point b,point c ){
	point t1=a-c; point t2=b-c;
	return fabs(dist(t1*t2));
}
void dfs(int pt, int ct);
void deal(int pt,int a,int b){
	int f=vis[a][b];   //所属三角形,即原来的ab。 
	face add;
	if(tri[f].ok){
		if((ptoplane(p[pt],tri[f]))>eps) dfs(pt,f);   //若点同样在该f三角形方向一侧,继续调整 
		else {
			add.a=b; add.b=a; add.c=pt; add.ok=1;
			vis[pt][b]=vis[a][pt]=vis[b][a]=trianglecnt;
			tri[trianglecnt++]=add;
		}
	}
}

void dfs(int pt, int ct){
	tri[ct].ok=0;   //去掉该面 
	deal(pt,tri[ct].b,tri[ct].a);   //因为有向边ab所属三角形去掉,则反方向边必定属于另一个三角形. 
	deal(pt,tri[ct].c,tri[ct].b);
	deal(pt,tri[ct].a,tri[ct].c);
}

void construct (){
	int i,j;
	trianglecnt=0;
	if(n<4) return ; //不可能构成一个多面体
	bool tmp=true; 
	for(i=1;i<n;i++){    //不共点两点 
		if(dist(p[0]-p[i])>eps){
			swap(p[1],p[i]); tmp=false; break;
		}
	}
	if(tmp) return ;
	tmp=true;
	for(i=2;i<n;i++){   //不共线 
		if(dist((p[0]-p[1])*(p[1]-p[i]))>eps){
			swap(p[2],p[i]); tmp=false; break;
		}
	}
	if(tmp) return ;
	tmp=true;
	for(i=3;i<n;i++){   //四点不共面K 
		if(fabs((p[0]-p[1])*(p[1]-p[2])^(p[0]-p[i]))>eps){
			swap(p[3],p[i]); tmp=false; break;
		}
	}
	if(tmp) return ;
	face add;
	for(i=0;i<4;i++){   //使各三角形的方向向量向外,同时记录下三角形的序号 
		add.a=(i+1)%4; add.b=(i+2)%4; add.c=(i+3)%4; add.ok=1;  //等于1表示在凸包上 
		if(ptoplane(p[i],add)>0) swap(add.b,add.c);
		vis[add.a][add.b]=vis[add.b][add.c]=vis[add.c][add.a]=trianglecnt;
		tri[trianglecnt++]=add;
	}
	for(i=4;i<n;i++){   //构建凸包 
		for(j=0;j<trianglecnt;j++){
			if(tri[j].ok&&(ptoplane(p[i],tri[j]))>eps){  //增加点可见该平,即在面方向一侧 
				dfs(i,j); break;
			}
		}
	}
	int cnt=trianglecnt;
	trianglecnt=0;
	for(i=0;i<cnt;i++){    //只有ok为1的才属于凸包上的三角形 
		if(tri[i].ok){
			tri[trianglecnt++]=tri[i];
		}
	}
}
double area(){
	double ret=0;
	for(int i=0;i<trianglecnt;i++){
		ret+=farea(p[tri[i].a],p[tri[i].b],p[tri[i].c]);
	}
	return ret/2;
}

int main(){
	while(scanf("%d",&n)!=EOF){
		memset(vis,0,sizeof(vis));
		for(int i=0;i<n;i++)
		scanf("%lf%lf%lf",&p[i].x,&p[i].y,&p[i].z);
		construct();
		printf("%.3lf\n",area());
	}
}

  

posted @ 2014-08-10 09:16  chenjunjie1994  阅读(196)  评论(0编辑  收藏  举报