分布式的cap原理
由来
1998年的加州大学的计算机科学家 Eric Brewer 提出,分布式有三个指标。
Consistency,Availability,Partition tolerance。
简称即为CAP。
Eric 提出 CAP 不能全部达到,这就是CAP定理。
C
Consistency,一致性的意思。
一致性就是说,我们读写数据必须是一摸一样的。
比如一条数据,分别存在两个服务器中,server1和server2。
我们此时将数据a通过server1修改为数据b。此时如果我们访问server1访问的应该是b。
当我们访问server2的时候,如果返回的还是未修改的a,那么则不符合一致性,如果返回的是b,则符合数据的一致性。
A
Availability,可用性的意思。
这个比较好理解,就是说,只要我对服务器,发送请求,服务器必须对我进行相应,保证服务器一直是可用的。
P
Partition tolerance,分区容错的意思。
一般来说,分布式系统是分布在多个位置的。比如我们的一台服务器在北京,一台在上海。可能由于天气等原因的影响。造成了两条服务器直接不能互相通信,数据不能进行同步。这就是分区容错。我们认为,分区容错是不可避免的。也就是说 P 是必然存在的。
为什么CAP只能达到 CP 或者 AP?
由以上我们得知,P是必然存在的。
如果我们保证了CP,即一致性与分布容错。当我们通过一个服务器修改数据后,该服务器会向另一个服务器发送请求,将数据进行同步,但此时,该数据应处于锁定状态,不可再次修改,这样,如果此时我们想服务器发送请求,则得不到相应,这样就不能A,高可用。
如果我们保证了AP,那么我们不能对服务器进行锁定,任何时候都要得到相应,那么数据的一致性就不好说了。
作者:经典鸡翅
微信公众号:经典鸡翅
如果你想及时得到个人撰写文章,纯java的面试资料或者想看看个人推荐的技术资料,可以扫描左边二维码(或者长按识别二维码)关注个人公众号)。