matplotlib 绘图 笔记
中文乱码问题
import matplotlib.pyplot as plt import matplotlib import random # 防止绘图时 中文乱码 # matplotlib.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['font.sans-serif'] = ['SimHei'] # plt.rcParams['font.sans-serif']=['Songti SC'] # matplotlib.rcParams['axes.unicode_minus'] = False
解决中文乱码的参考链接, 有可能需要改一些配置文件
https://blog.csdn.net/weixin_44424296/article/details/115433307
### 常用参数
#### 常见颜色参数:(color)
基础颜色: 蓝-'b' 青-'c' 黑-'k' 绿-'g' 紫-'m' 白-'w' 红-'r' 黄-'y'
也可以使用RGB色, 如'#FF0000'为红色
#### 常用线型:(linestyle)
'-' 实线 '--' 虚线
'-.' 虚点线 ':' 点线
'.' 点 ',' 像素点
'o' 圆点 'v' 下三角点
'^' 上三角点 '<' 左三角点
'>' 右三角点 '1' 下三叉点
'2' 上三叉点 '3' 左三叉点
'4' 右三叉点 's' 正方点
'p' 五角点 '*' 星形点
'h' 六边形点1 'H' 六边形点2
'+' 加号点 'x' 乘号点
'D' 实心菱形点 'd' 瘦菱形点
'_' 横线点
#### 位置字符:( plt.legend(loc='??') )
'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', 'center'
### 折线图
# 生成 fig plt.figure(figsize=(20,8)) # 准备数据 x = range(60) # 准备上海的数据 y_上海 = [random.uniform(15, 18) for i in x] # 准备北京的数据 y_北京 = [random.uniform(1, 4) for i in x] # 构建中文坐标标签 x_ch = ['11点{}分'.format(i) for i in x] y_tickets = range(40) # 画折线图 plt.plot(x, y_上海, label='上海', color='blue') # 颜色名称: https://matplotlib.org/stable/gallery/color/named_colors.html plt.plot(x, y_北京, label='北京', color='#000000', linestyle='--') # plot 后再修改刻度 # 修改x y刻度 plt.xticks(x[::5], x_ch[::5]) plt.yticks(y_tickets[::5]) # 增加 x y 轴 描述 plt.xlabel('时间') plt.ylabel('温度') plt.title('图表的标题') # 添加图例 plt.legend(loc='best') plt.show()
### 多个子图
# 多个坐标系显示 子图 # 生成 fig 1行 2列 fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(20, 8)) # 准备数据 x = range(60) # 准备上海的数据 y_上海 = [random.uniform(15, 18) for i in x] # 准备北京的数据 y_北京 = [random.uniform(1, 4) for i in x] # 构建中文坐标标签 x_ch = ['11点{}分'.format(i) for i in x] y_tickets = range(40) # 画折线图 ax[0].plot(x, y_上海, label='上海') ax[1].plot(x, y_北京, label='北京', color='r', linestyle='--') # plot 后再修改刻度 # 修改x y刻度 ax[0].set_xticks(x[::5], x_ch[::5]) ax[1].set_xticks(x[::5], x_ch[::5]) ax[0].set_yticks(y_tickets[::5]) ax[1].set_yticks(y_tickets[::5]) # 增加 x y 轴 描述 ax[0].set_xlabel('时间0') ax[0].set_ylabel('温度0') ax[1].set_xlabel('时间1') ax[1].set_ylabel('温度1') ax[0].set_title('子图0的标题') ax[1].set_title('子图1的标题') # 添加图例 ax[0].legend(loc='best') ax[1].legend(loc='best') plt.show()
### 柱状图
以电影票房统计为例
# 生成电影名及随机票房 电影序列 = list(range(5)) 电影名称 = ['电影{}'.format(i+1) for i in 电影序列] 电影票房1 = [random.uniform(100, 1000) for i in 电影序列] 电影票房1 = [int(i) for i in 电影票房1] 电影票房2 = [random.uniform(100, 1000) for i in 电影序列] 电影票房2 = [int(i) for i in 电影票房2]
plt.figure(figsize=(10,8)) x = range(len(电影名称)) y = 电影票房1 plt.bar(x, y, width=0.8, color=['r','g','r','g','r']) # 修改刻度 显示电影米杆子 plt.xticks(x, 电影名称) plt.show()
### 多个系列数据的柱形图
# 多个系列数据 plt.figure(figsize=(10,8)) x = range(len(电影名称)) y1 = 电影票房1 y2 = 电影票房2 plt.bar(x, y1, width=0.2, label='首日票房') plt.bar([i + 0.3 for i in x], y2, width=0.2, label='周均票房') # 修改刻度 显示电影米杆子 plt.xticks([i + 0.1 for i in x], 电影名称) plt.legend(loc='upper center') plt.show()
### 散点图和折线图 画在一起
# 散点图 和 折线图 可以画在一起 plt.figure(figsize=(20,8)) y标签 = range(1000) plt.scatter(x, y1,color='b') plt.plot(x,y2,color='k') plt.yticks(y标签[::100]) plt.show()
### 直方图
体现概率分布
# 生成随机的 0-100的1000数字 序号 = range(1000) 随机数字 = [random.uniform(0, 100) for i in 序号]
# 绘图 plt.figure(figsize=(20,8)) # 分组 组距 = 10 组数 = int((max(随机数字) - min(随机数字)) / 组距 ) 组数 = 100 # 画直方图 plt.hist(随机数字, 组数) # 指定刻度范围及步长 plt.xticks(list(range(100))[::5]) plt.yticks(list(range(30))) plt.grid(True, linestyle='-', alpha=0.8, color='k') plt.show()
### 饼图
数据名 = ['数据1','数据2','数据3'] 数据值 = [16,10,12] plt.pie(数据值, labels=数据名, autopct='%1.2f%%',colors=['r','b','y']) # 显示正圆 plt.axis('equal') plt.legend(loc='best') plt.show()
可以使用plt.annotate('注释文本',
xy=(1,2), # 箭头位置
arrowprops=dict(arrowstyle='->'), # 自定义箭头样式
xytext=(3,4) # 文本位置
) # 生成带指向的注释
jupyter 笔记文件, 后缀改为 ipynb 后使用

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# matplotlib 绘图" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 中文乱码问题" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import matplotlib\n", "import random\n", "# 防止绘图时 中文乱码\n", "# matplotlib.rcParams['font.sans-serif'] = ['SimHei']\n", "plt.rcParams['font.sans-serif'] = ['SimHei']\n", "# plt.rcParams['font.sans-serif']=['Songti SC']\n", "# matplotlib.rcParams['axes.unicode_minus'] = False" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 常用参数\n", "#### 常见颜色参数:(color)\n", " 基础颜色: 蓝-'b' 青-'c' 黑-'k' 绿-'g' 紫-'m' 白-'w' 红-'r' 黄-'y'\n", " 也可以使用RGB色, 如'#FF0000'为红色\n", "#### 常用线型:(linestyle)\n", " '-'\t实线\t'--'\t虚线\n", " '-.'\t虚点线\t':'\t点线\n", " '.'\t点\t','\t像素点\n", " 'o'\t圆点\t'v'\t下三角点\n", " '^'\t上三角点\t'<'\t左三角点\n", " '>'\t右三角点\t'1'\t下三叉点\n", " '2'\t上三叉点\t'3'\t左三叉点\n", " '4'\t右三叉点\t's'\t正方点\n", " 'p'\t五角点\t'*'\t星形点\n", " 'h'\t六边形点1\t'H'\t六边形点2\n", " '+'\t加号点\t'x'\t乘号点\n", " 'D'\t实心菱形点\t'd'\t瘦菱形点\n", " '_'\t横线点\n", "#### 位置字符:( plt.legend(loc='??') )\n", " 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', 'center'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 折线图" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIwAAAHuCAYAAAD9UpdZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XeYFFXWx/HfZRiiEgQEEwoGBBMqaxYxK6JiVnQVFfOqrGGNbDC7a8asq5gzuooKooKBoIJieAEBSYKSo4RJfd4/zrQzJcwwoau7Z/h+nqefmemurrrT3VVdde655wYzEwAAAAAAAJBUJ9MNAAAAAAAAQHYhYAQAAAAAAIAIAkYAAAAAAACIIGAEAAAAAACACAJGAAAAAAAAiCBgBAAAUAkhhLCW++pmoi0AAABxIWAEAABQLIRwYwjh9nUstlcIYegf7vskhLBbGet8JoRweBXbUyeEUO8P99WvyroAAAAqg94wAABQq4QQvpaf4+SXs9gWZtY6hHCopKNLLfsnSTkhhLuSq5M008zuL/XcnSSNKLW9ZpJaSvqmjG2tTq4/hDBWUn1JhcWPNZQ00cyOLX78J0m/ltrOOZKuCyE0lLSRpGmS6knqUs7/BgAAUG0EjAAAQG1TIOl4M5seQthHUj9J3c3MpN+Hj00vXna6pMGSVhb/3VgekBlU/HeOSgWeQgjvyINKq0IIPSXdIqmJpGaSJhePVmtjZhuEEJpIaiGpkaRWIYS2Zrb7OtqeJ2mgpISkNpJGmVmXEMJpkrYzs39V4fUAAACoNAJGAACgtimQpBBCU0lPSFol6asQwvaSrpH0mIozfMxscgjhQXlgR5Jay4fs71L8d66ks0ute2tJ25vZkhDCLZI2lHSWpK5m9mPxdn8qXnYfSZdL2l/SVpIOkHTJOtpeR9JYSUWSlvvqwhQVZzSFED6R9IGZ3VqJ1wMAAKDSCBgBAIDaKEfSO5IWSfpM0mhJfSQ9ouIajiGEnOJle5hZMsh0laQGZnZL8d/1/Eeoa2aF8syf0g6QZMlgUbGE/M7BIYThkpZJ+o+k/BDCeHk2U31JJs9eaizpcjP7QD7kLBkMShbXXibpL8W3oZI2rvrLAgAAUDEEjAAAQG1UJOlSSQskfS6pr6SjzCwRQkhO+nG4pHsl/RZCMEmbyIM3U4qHmyU1kgdxXljLdr6U9GQI4b9mdm7xfaWDSj3kWUr3SrrazDpJXlxb0gIzezS5YAhhF0kfFrdd8sBWp+L11ZF0nKQH5IEmAACAWDFLGgAAqI22kHSPpGclvSjpREkXhBAmSzpYkszsPTPrUFxX6Ez50LUj5UWn95S0h6S3JO1tZqWDRZ+FEMbJM5ZWmtnnknYoYya0q+RBpXslXRRC6BlCOD75YAjhthDC5sV/Lpf0o6QJki6WNF4e8Mop/n9mFC/HLGkAACB2BIwAAEBt9LM8CHSIPAhzm6RP5bOLDS+9YAjhLEkfS5plZqMkTZZnJz1avHzuH9a9v5l1lvRkqfvulnRmCKGBpN+K1/vX4nZ8I+kHSUfJA0EFpZ6XkPSgJJnZVHkm0weSNpMX686VNE5Sb0lfSJooaUilXw0AAIBKImAEAABqmyBJZjZb0t/ktX/ekPSJmS2VD/kKIYRmIYQR8qLVp6r4TknvS7pIUlv5bGsLKrDNNyWdI6mpvOaQ5MPLLiq1zLbyTKFBpe67RdKeIYQji4t0t5O0qzzLqKu8APZIebDpQ0kPy4NJAAAAsSJgBAAAapvfM4LM7E55HaHfJHUotUxdM1siqa+ZHSRpjnwa+8/lQZ4j5cWlh4QQ+oUQOpVad+khacltJeSBqiMkTSne9vfFwaY6xbedJd0kr5XUVlKhma2WZ0J9K2l3eYHum+Sztu0pqWVxW7qb2bji/2V1cXAJAAAgNsGMuokAAKD2CCF8LamBfAaysmxiZq1LPWdvSa9KutjM3im+L0fSsfLso2vMbFoIoY+k58wsr7hI9SozmxRC2ETSQ/LZ2B41s2Wl1v2MpJfMbHCpvzeXdI6ZzSi13C2SvjWz10IIh8qzirpIqicPTDWXZzA1kHRQ8fA5AACAWMQWMAohbCTvKfumgqncAAAA1RZCaCFpiZkVrXPh6PMamtmqmJpVke3nSMoxs/ICXQAAAGkRy5C0EEJz+fj8PSQNCyG0CiHMDCEML77tFMd2AQAAzGxhZYNFxc/LWLCoePtFBIsAAEC2iCXDKIRwgKQ8MxsdQrhL0nxJG5nZNSnfGAAAAAAAAFIqlgwjM/ukOFjUVZ5ltEpSjxDClyGE/4YQ6saxXQAAAAAAAFRfbIGb4mlpT5G0WNI3kg4xs19DCM9K6i7p7bU853xJ50tS48aNd99+++3jah4AAAAAAMB6Z+zYsQvMrNW6lot9lrQQws2SfjCzV4r/vkxSrpndXd7zunTpYmPGjIm1bQAAAAAAAOuTEMJYM+uyruXiKnp9TQjhzOI/m0l6NISwS/HsHz0lfRvHdgEAAAAAAFB9sQSMJD0u6c8hhE8l5UjqKuk5SeMkjTKzD2PaLgAAAAAAAKoplhpGZrZY0qF/uHvnOLYFAAAAAACA1GK2MgAAAAAAsF4qKCjQrFmztHr16kw3JeUaNGigzTffXLm5uVV6PgEjAAAAAACwXpo1a5Y23HBDbbXVVvLJ3msHM9PChQs1a9YstWvXrkrriKuGEQAAAAAAQFZbvXq1WrRoUauCRZIUQlCLFi2qlTlFwAgAAAAAAKy3aluwKKm6/xcBIwAAAAAAgCxmZr//PnXqVC1cuDD2bRIwAgAAAAAAyALdunVTfn5+5L78/HwdeOCBevPNNyVJ1157rZ5++ml9+OGH+vDDDzVkyBAtXrw45W0hYAQAAAAAAJAFFi9erHr16kXuq1evnt58802NGTNGP/74o1auXKk2bdpozpw5mjNnjmbPnq28vLyUt4VZ0gAAAAAAALJA6bpDZqaioiJ9//33aty4sW6++WYdccQRSiQSGjBgwO/LnXHGGWrTpk3K20LACAAAAAAArPf69pXGjUvtOjt3lu67r3LP2WuvvSRJiURCXbp00cUXX6wrrrhCvXv31qOPPqp//etfuvnmmzVw4EAdddRRevXVV1Pb6GIEjAAAAAAAALLE6NGj17hv0KBBWrJkiS655BINGzZMs2fP1vLly/XKK69o/vz56ty5s4466qiUtoOAEQAAAAAAWO9VNhMoncaMGaOXX35ZTz31lC688EKde+65qlPHy1J///33OuKII1K+TYpeAwAAAAAAZLFHHnlEp556qlauXKkNNthAO+20k0aPHq1Vq1apYcOGysnJSfk2yTACAAAAAADIgMLCQoUQygz4FBUVadq0aZo2bZq6dOmiOXPmaMKECTrhhBMkSU888YTq1aunY489Vk2bNk1p2wgYAQAAAAAAZMCAAQP0+OOP/z68rEGDBr8XvZa88PVRRx2la6+9VpLUpk0bffjhh5KkSZMm6bTTTtNbb72V8mCRRMAIAAAAAAAgI/r06aM+ffpU6bnbbrutRo4cqfr166e4VY4aRgAAAAAAADVMCCG2YJFEwAgAAAAAAAB/QMAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAoIZ46aWXtHTp0ti3wyxpAAAAAAAAGXbWWWepX79++uyzz1RUVPT77Glz587V+PHjlZubK0kaOXKkPvvsM/Xq1UuSVFBQoA4dOmjTTTdNaXsIGAEAAAAAAGRYbm6u6tatq9zcXIUQfr9/yZIl+uabb1SvXj1JUocOHSRJ48aNkyTl5+erVatWBIwAAAAAAABqi6KiIuXk5Kxx/+LFi3Xuuefqrrvu0hVXXKHevXtr+vTpkWUaNmyo999/P5Z2ETACAAAAAACQ1K1btzXuO/nkk3XxxRdr5cqV6t69+xqP9+7dW71799aCBQt04oknRh4bPnx4udtbunSpevbsqZycHE2YMEE33nijJOntt9/Wiy++qMsuu0zt27eXJE2cOFGjR4+OPH/PPfesxH9XOQSMAAAAAAAAMqBp06YaNmyYJP1es0iSOnbsqFtuuSUyNK2oqGiN55d+PNUIGAEAAAAAAKj8jKBGjRqV+3jLli3XmVFUUdtuu+0awaAddthB3bp10+LFi7VkyRK1a9dOzZs3T8n21oaAEQAAAAAAQAbNmTNHs2fPXuP+wsJC1a3roZtdd91VBx54oDbbbDMNHz5cO+20k/Lz82NrEwEjAAAAAACADBg6dKj69eun7bffXosXL5Yk5eTkaObMmZKkJ598UgsXLlSdOnX05Zdf6uWXX9Znn30mSerRo4fOOOMMjR07Vvfcc4/q1KmT0raldm0AAAAAAACokK5du+qTTz7RgAEDtM022yg/P19du3bVqFGj1K1bN73zzjv685//rIULF+q1117TV199pXvvvVdt2rRR48aN9cYbb2jTTTdVXl5eytsWzCzlK02FLl262JgxYzLdDAAAAAAAUEtNmDBBHTt2zHQzKmzhwoWaMWOGdt111woVvF7b/xdCGGtmXdb1XIakAQAAAACA9ZaZxTrbWCq1aNFCLVq0qNCy1U0QYkgaAAAAAABYLzVo0EALFy6sdnAl25iZFi5cqAYNGlR5HWQYAQAAAACA9dLmm2+uWbNmaf78+ZluSso1aNBAm2++eZWfT8AIAAAAAACsl3Jzc9WuXbtMNyMrMSQNAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEBFbwCiEsFEI4dAQQsu4tgEAAAAAAIDUiyVgFEJoLmmQpD0kDQshtAoh/DeEMCqEcGMc2wQAAAAAAEBq1I1pvTtLusLMRhcHjw6SlGNme4cQngohbGtmk2PaNgAAAAAAAKohloCRmX0iSSGErvIso40kvVr88AeS9pO0RsAohHC+pPMlqW3btnE0DQAAAAAAAOsQZw2jIOkUSYslmaTZxQ8tktR6bc8xs8fNrIuZdWnVqlVcTQMAAAAAAEA5YgsYmbtE0neS9pHUsPihDeLcLgAAAAAAAKonrqLX14QQziz+s5mkO+TD0CRpF0nT49guAAAAAAAAqi+uotePS3o1hNBH0g+S3pL0aQhhU0lHStorpu0CAAAAAACgmuIqer1Y0qGl7wshdCu+799mtjSO7QIAAAAAAKD64sowWkNxEOnVdS4IAAAAAACAjKL4NAAAAAAAACIIGAEAAAAAACCCgBEAAAAAAAAiCBgBAAAAAAAggoARAAAAAAAAIggYAQAAAAAAIIKAEQAAAAAAACIIGAEAAAAAACCCgBEAAAAAAAAiCBgBAAAAAAAggoARAAAAAAAAIggYAQAAAAAAIIKAEQAAAAAAACIIGAEAAAAAACCCgBEAAAAAAAAiCBgBAAAAAAAggoARAAAAAAAAIggYAQAAAAAAIIKAEQAAAAAAACIIGAEAAAAAACCCgBEAAAAAAAAiCBgBAAAAAAAggoARAAAAAAAAIggYAQAAAAAAIIKAEQAAAAAAACIIGAEAAAAAACCCgBEAAAAAAAAiCBgBAAAAAAAggoARAAAAAAAAIggYAQAAAAAAIIKAEQAAAAAAACIIGAEAAAAAACCCgBEAAAAAAAAiCBgBAAAAAAAggoARAAAAAAAAIggYAQAAAAAAIIKAEQAAAAAAACIIGAEAAAAAACCCgBEAAAAAAAAiCBgBAAAAAAAggoARAAAAAAAAIggYAQAAAAAAIIKAEQAAAAAAACIIGAEAAAAAACCCgBEAAAAAAAAiCBgBAAAAAAAggoARAAAAAAAAIggYAQAAAAAAIIKAEQAAAAAAACIIGAEAAAAAACCCgBEAAAAAAAAiCBgBAAAAAAAgom4cKw0hNJX0sqQcSSsknSJpiqSpxYtcambfx7FtAAAAAAAAVE9cGUanS7rHzA6TNEfStZJeMrNuxTeCRQAAAAAAAFkqloCRmT1sZkOL/2wlqVBSjxDClyGE/4YQYslsAgAAAAAAQPXFWsMohLC3pOaShko6xMz2kJQrqXsZy58fQhgTQhgzf/78OJsGAAAAAACAMsQWMAohbCSpv6RzJH1nZr8WPzRG0rZre46ZPW5mXcysS6tWreJqGgAAAAAAAMoRS8AohFBP0muSrjOzGZKeCyHsEkLIkdRT0rdxbBcAAAAAAADVF1eG0bmSdpN0QwhhuKT/k/ScpHGSRpnZhzFtFwAAAAAAANUUS/FpM3tE0iN/uPtfcWwLAAAAAAAAqRVr0WsAAAAAAADUPASMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEbEEjEIITUMI74cQPgghvBlCqBdC+G8IYVQI4cY4tgkAAAAAAIDUiCvD6HRJ95jZYZLmSDpVUo6Z7S2pfQhh25i2CwAAAAAAgGqKJWBkZg+b2dDiP1tJOkPSq8V/fyBpv7U9L4RwfghhTAhhzPz58+NoGgAAAAAAANYh1hpGIYS9JTWX9LOk2cV3L5LUem3Lm9njZtbFzLq0atUqzqYBAAAAAACgDLEFjEIIG0nqL+kcSb9Jalj80AZxbhcAAAAAAADVE1fR63qSXpN0nZnNkDRWJcPQdpE0PY7tAgAAAAAAoPriyvQ5V9Jukm4IIQyXFCT9OYRwj6STJb0b03YBAAAAAABQTXXjWKmZPSLpkdL3hRDelnSopH+b2dI4tgsAAAAAAIDqiyVgtDZmtlglM6UBAAAAAAAgS1F8GgAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEQSMAAAAAAAAEEHACAAAAAAAABEEjAAAAAAAABBBwAgAAAAAAAARBIwAAAAAAAAQQcAIAAAAAAAAEXWr8+QQwoFmNixVjQGQHmbSsmXSvHnRW+PG0umnSyFktn2TJ0tbbSXl5ma2HQAArG+S5wfbbJPplmSPL7/0n3vskdl2AEC6lRswCiHkSHpN0imSXjezY0MIdcwsUbzITZL2j7mNACogL2/NAFB5t/z8ta+nbVupa9f0tr20iROlHXeULrlEuv/+zLUDAID10bnnSoMHS9OnSy1aZLo1mfXLL9KVV0ovv+x/77+/dP310uGHZ75zDQDSodyAkZkVhRAaSOonadsQwhWSdg8hvCHpfUm/pqGNAMrx229S797SG2+s/fEGDaTWraWNN5Y22UTaZRf//Y+3pk2lvfaSbrstswGjO+6Qioqkhx6SLrhA6tQpc20BAGB9MnGin0+Y+ffw3/+e6RZlRmGh///9+nkH2z//KTVvLt11l3TkkdKuu3rg6LjjpJycTLcWAOJTkSFpCUmfSDpQ0taSGknqJOlkSR/H1zQA6zJ7tnT00dK333oPWIcOawaCNtig4r1gf/2rdN110pgxUpcu8bZ9baZPl55/XjrjDGnQIG/P4MH04mULM+mRR6QddpAOOCDTrQEApNq//+0dTX/6k/TAA35u0bhxpluVXqNGSRdd5OdWhx8uPfhgyfC8Cy+UXnjBO7dOOknabjvp2mt9OH+9epltN2qHQYN8/2vdOtMtAVyZRa9DCLkhhCGSEmb2kaQFkmZLMknPygNIY9LSSgBrGDdO2nNPr/czaJD3ep13nnTssdLee0tbby1tuGHlgi0XXeSZRrffHl+7y/Pvf0t16vj2//EP6YMPpHffzUxbsKb77vOhgj17erASQPkKC6U5c/x4/dNPmW4NUL6ff5aee07q08e/hxculJ58MtOtSp+FC/08ap99pAULpNdfl95/P1rLqV496eyzpfHjpVdflRo1ks45x5fp319auTJz7UfN9+KL3hF8yCHS0qWZbg3ggpmV/WAIHSTdJQ8WHSRpsqQ8STmSHpS0t5ndEEfDunTpYmPGEI8C1ubdd6VTTvH06EGDfJhZqtx4o3TrrdL//V96h4P98ovUvr105pnS449LBQXSzjv78LQffli/e+7Gj5ceftjT3zfdNDNtePNN6YQTpEMPlT7/3Os4vP8+2V+p8umnUrt20hZbZLolWJeiImn+fGnuXL/NmVP27wsWeGae5Fkb339PIWFkr759fRjWTz95PcMDDpCmTZOmTKnd38GJhDRggPS3v0lLlnh289//7p1u62ImDRni502ffy61auXPv/hi74ADKmraNKlzZz/PmzJFOvhgP8evW60pqoCyhRDGmtk6x5SUmWEkSWb2ozyj6F+SfpR0rnwY2zFmNkhS+xS0FUAl9O8vHXOMDz/74ovUBoskP2Fs1MjTrdPp7rs9SHTNNf53bq50zz2eQdW/f3rbkk1eeslnZXnoIe9xmj8//W346itPt99jD+mttzybbcgQ6bHH0t+W2uiNN6Ru3aTu3X0fQPb47Tfplls8ULrzzj5EoF49rwfXubMPVznrLL/QfPhhacQIf0779l7bpF8/33dffNGPaRddVBJAArLJggXSE0/4sb5tW7/v2ms96+illzLbtjh99513gJx7rtSxo/TNN9J//lOxYJHknSZHHCF99pkH/rt08c6dtm2lG27wSUaAdSks9HIMkvTee/59MmSIdNllfGcgC5hZuTdJH0naXl74emNJe5R67OF1Pb+qt913390AlCgsNLv0UjPJ7NhjzX77Lb5t9e1rlpNjNnVqfNsobf58s0aNzE4/fc3Hunc3a9LEbO7c9LQlW+Tlmf3lL/5+77uv2SuvmDVsaNa5s9miRelrx7RpZq1bm7VrV/IeJBJmhx/u79nkyelrS230+edm9ev76yuZ/ec/mW4RzPx4+8QTZm3a+Puy++5mxxxjdv75Zv36mT34oNnrr5t99pnZpElmy5b5flGeBx/0dT33XHr+B6Ay+vUzC8Fs/PiS+xIJs513NuvY0ayoKHNti8OyZWZ//auf67RsaTZgwLr34Yr6+muzk07y17NhQz93mzEjNetG7fTPf/r3wwsvlNx39dV+3333Za5dqN0kjbEKxGUqEjD6r6THJD0h6TlJb8uLXT8raZ+KbKQqNwJGQIlly8yOOsr32Cuu8IuZOM2aZZaba3bRRfFuJ+nGG/1/++GHNR+bONGsbl2z885LT1uywcyZZnvtVfJ+5+f7/YMH+/uy557+mYjb4sVmnTqZNWsWvYgw889Is2Zm++wT/+extpo40Wyjjcy23daDpkcfbda4sb//yIxEwuz998123NH3v733Nhs5MjXrLiz0fbdlS7MFC1KzTmRGQYHZlClmQ4aYPfSQH6dPO83sp58y3bKqWbbMj+fHHbfmYy++6PvCm2+mv11xSCS8A2bTTT2gc+GFZgsXxrOtiRPNzj7bz2Hq1vXfR4zwzrilS1MXoELNNmKEWZ06ZmecEb2/qMjs+OP9c/r225lpG2q3igaMyq1hVJ4QQkdJPc0slvK41DAC3KxZUo8eXsenf38f0pAO558vPfusj6neZJP4trN0qbTlltJBB0kDB659mSuu8ILLY8f6VLa12dChUq9eUl6e9NRT0oknRh9/6y2/b7/9PG25UaN42lFQ4EOkPvnE06IPPHDNZV580Ycv3HFHyVBCVMycOV6cfuVKn5GnfXufJbBTJx/eUNa+gPh8+6109dW+D7ZvL915p9ftSmWdru++k3bfXfrzn33/RvZatUqaOtVrifz0k9+Sv0+f7rWskho29L8PPLBm1na76y7/7H/xhQ89Lq2w0IfAt2wpjR5d8/630iZNkv7yF9/Hd93VZ/3cc8/4tztzpg+7f+IJ/1wl5eZKG20ktWjhr2+LFmXfko83b05Nm9pk6VIf3hyCT47QpEn08ZUrvZbYhAk+7LG2nwMjvSpaw2hdRa+P/8NdgyW9J2lx8d+7mtlWVW1keQgYAdLXX/tsCcuX+2wcRxyRvm1PmeIniVdc4eP543L77T7ef8wYv5BamyVLpG239Yvp4cNr9glrWRIJ6bbbvNBmp05e16ZDh7Uv++KLPtb98MM9gFS/fmrbYuYzxfz3v14I9Kyzyl7ulFO8DWPGeI0XrNtvv3nNogkT/PP8pz+VPHbHHdJ113mhy6OOylQL1y+zZ3utoQED/GKsXz8vWBtXkd9rr/Vg1LBh/jlAZuXlSe+8I/34YzQw9Msv0eWaNfOC5Vtv7bfSv2+yiU9B/9e/+vHw2GMz879URV6eF9zv2FH66KO1L/Poo95ZVVM/s6tW+bnGnXd68flbb/X/Jycnve2YP987CBYuLPu2YIH/LK+eXbt20gsveKcDarbTT5deecVNyoo0AAAgAElEQVSDQWW9n7/+6oFcMw/qbrZZetuI2itVAaOfJN0k6VpJ30m6XtIzko6RFCS9YGaxXMISMML67p13pFNP9R6ld9+Vdtop/W04/XTpf//z3rGNNkr9+leulLbaStptN2nw4PKXfewx6cILPXB20kmpb8va3Hyz9OWXvt0jj5TqlDtNQNUtWuQZB++954GgRx+VGjcu/zlPPulBneOO89cklT2OySBev37STTeVv+yCBdKOO3ox4C+/TH3wqrYpLPSLycGDfd/q0SP6eH6+9yCuXOkzFcaVQVaWZcs8kJWOXvdMW75c+ve/vee/qMiLi15/vQeN4rRype8zubme1dSgQbzbS7UVK/wzvNtuHuSuydkO8+b5MXTkSP97k03KDgqt6zuwoMAzBVat8n23YcP4258Kjz8uXXCBZ90ccsjal1m92r+rO3de93d1ppj57IRTp3rQb+rUkt8nTPDv2dNP92yqNm0y3drymXnHQllBpeee80D38897FiRqpuef93O/f/3LOwvL89130r77eufpp59KG2yQnjbWdCtWeCH7r77yWUovvtgL08NVNGC0rvpFXxb/HCbpb5K2lvSrpKeKb5MqMu6tKjdqGGF9lUh4gbsQzLp0Mfvll8y15bvvvHbBP/4Rz/rvu8/X/+mn6162sNCLb265pdnKlfG0p7Rk2xo39p/bbmv2wAOprx301Vf+P9WrZ/bww5WraZBs4+mnp66O0Msv+zp79ap4W955x59z3XWpaUNtlUh4LS7J7NFHy15u+HBf5vrr09c2M6+Vtd9+vu2TTjKbMye920+XggJ//Vu39v/11FPTV+A/acgQ3/bf/57e7aZC797edsmL3y9ZkukWVc333/uxt2FDLzS7YkX11/nhh/663Hxz9deVDoWFZltv7eca6zre3367/29jx6anbWuTl2f2449eZ+zBB7121LHHes2xRo1KPpeSn0NtsYXZAQeYnXOO2ccfZ67dqTZvntdXC8HsrruohVQT/fST2YYb+nduQUHFnvPuu17r6JhjqB25NqtXm335pdeVO/tsPy7UqVNyTKhb17/3qRNZQqkoel1GwGiCpDMlnZV8PI4bASOsjwoKzC65xPfM446Ldya0ijrmGLPmzVMfKFm92myzzcz237/izxk2LD0n46+/7idixx1ntmqVF/1MFqHecEOzyy/3gqfVkUj4RWu9emZt25p98UXV1nPrrd6u886r/kljcsau/ff396cy+vTxL+YRI6rXhtrs5pv9vbrhhnUve+aZXuD8j8XG43T55d6+M87wz0Hz5qmdOSjTEgmzQYN8xifJT9RHj85ce3r1Sv97XF3PPuuvXb9+Potc3bpm229f82ZLfPddP5ZvsokH7VPphBM8CFUTZsVKdhC88ca6l12yxGcsPfnk+NuVtHy5z9p64IH+PRlCNCjUsKHZDjv4eUrfvmb9+/t7O3Gif3fXZitXmp14or8Ol1xCAKEmKSjwgF/TpmbTp1fuuf37l0yIsj4rKDD79luzJ5/0wvW77+7fp8ljQ8uWZkce6Z0yb7/tne8//ODH/d12S00HQW2QqoDRBEn7SPpa0kPFAaNvJHWVdICkTyuykarcCBhVXyLhPTEPPuhf8Oeea3bPPd6zOWtW7bkIqC2WLfODm2R21VXZM4Xt6NEWy3Tfjz/u6x08uHLPO+EE70mcNSu17Un69FO/WN5nnzUzmb74wi/y6tb1E9cePcyGDq38vrRihQcEkj308+dXr83XX+/r6tu36vv15MlmLVp4JlVVZnBatsxsq628t3r58qq1oTZ7+ml/j/7854q9R3PnesCmW7f0HKuTMyFdfrn/PWGC2b77+n2HHWY2bVr8bYjT11+bHXSQ/z/bbGM2cGDmvwOT7/H++2fP8b48Eyd6xuX++5f0iA8f7seN5s3NPvoos+2riGQGb506Zrvuavbzz6nfxvTpHsg46aTUrzuVEgmzXXbxgF9FP3/XXuuv3aRJ8bYt6eyz/bt2n308kP2Pf5g984x3bvzyS+b34UwrKvLzRcln2cyGTkas29//7u/ZSy9V7fmXXurPf+SR1LYrWxUW+jnJ88/7Oco++/gxNhkcatLEv9+vucbstdf8GFzWsWHQID+mnHwyxw+z1AWMrpLUV9Llkq6Q1FTSZEkfFt9mVmQjVbkRMKqaefP8AHTOOd4bk9yZ2rY1a9Uq2jPTtKlHuPv0Mbv3XrMPPjCbPTu7d6BEwi+ua9uUxDNn+nCrnJzyh6pkysEHm7Vpk7oeu4ICs/btvUegsp+3qVM9oPPH6UdTYfx4v/Dp0KH8z9js2d7DntynOnXy960iPRaTJvl7HYLZP/+Zml7BRMLsssu8LTfeWPnnL1hgtt12fuFXnUyB4cP9/7rooqqvozYaMsSDjAcf7EMqKurRR/09ff75+Npm5kNPGzXyjJv8/JL7i4o8tXuDDTxQcN99NacXu7DQbNEis//7Pw/OhuCf7wceqNx7ELcnnvD3+MknM92S8q1a5cGFFi3WDLL89JMfA+vWze4LmPx8swsuSE8G77/+5dvJ5mFQ773nbXz66Yo/59df/fv3/PNja9bvktlPVflOW9889JAH8nbf3d8jZK9PP/X36swzq76OggKz7t39mmHIkNS1LdOKijx7/3//M7vtNi+30LmzH3OS167Jc5W+fX0o8Y8/Vr7D5c47fV033RTP/1GTpCpgdICkO4t/377451GSmhT//nhFNlKVW20IGL31ltkee/hB4bbbvEdz/PjoCXl1rVzpGQ5/+5v3liV3qGbNzI4/3k/eSg+dmTfPh/U8+KDZxRf72O6WLaOBpGbNPHp73nl+gTB0aPoCSYmE180YPdrslVd8p77oIj8wdupUMkY9N7fymSnZauxYT4vfcMPs/Z8++shf94cfTs36nn/e1zdwYNWen8yoGTUqNe0x889427Y+vrmi9UxWrfIhO8l9r3lzs6uvLjvFeOBA7wnZaKPUv9eJhAd/Ja81UVGrV5t17epD4z7/vPrtuPLKqmWO1VbffOP79s47V77WS1GR2Z57mm28sdnixfG0b8kSz7hp06bsemkzZpRkP+61lwdh0mH5cs9s+uYb/956802/uL33Xs80uPxys7PO8homXbv6a9y2re9jpb/T6tf3nse4XsPqKCryjJ3mzT3jKFtdfLG/loMGrf3xpUv9e1oy+8tfKl6TI10WLfKAbbLWWtwZXStXesbljjtm32uRtP/+XuOnsgHUCy/074s46ytOn+6dmnvtldpz5trsnXf8HHnLLdN3jEblLF7s31Ht21e/zMOyZf6d16SJD7WqSYqK/Lt90CC/zjvzTA92/rEO2RZb+LnHVVf5d/9336XmeJpIeLZ3RYfj1mYVDRiVOUtaCKGBpCGSTpPUQNLdks4orl90pKRGkt43s7vXWVm7CmrDLGnvvSfdc480caLPZpBUt67PuLH99n7r2NF/dujg07aWJ5HwWVWGDvXb55/77BW5udI++0iHHuq33Xev3HSh8+b5rB7J2/jx/nPhwpJlmjWTNt/cK/NX5ta4cfTv/Hxpxgxp+vSSn8nbjBn+/5TWvLnPzrHllv5zq62kp5/2mS8++8xn7aipfvxR2msvqUkTnwltxx0z3aK1M/PP15w50qRJ/nmrqkTCZ3wLwWd9qMrMY7/9Jm23nbTFFj5FbXVnL1u2TOra1T9Tn3zis/9Uhpk0YoRPqzxwoP/ds6d0+eXS/vv7DEzXXeezs/zpT9Jrr/nnOdWKiqQzz5RefNHbcuml6273mWf6TB0vveSz8lXX6tV+/FmyRPrhh/hnnMpmM2f6/p2TI40eXbWpcL/5xmf0uPBC6aGHUtu+RMJniHrvPZ8ue7/9yl7WzKdx7tvXZxe74QafHj7VU88vWiS9+aZPM/zxx/6ZLkvTpv69tK7bQQdJbdumtp2pNGGCtMsuPvvjCy9kujVreuMN6cQTpSuv9GNYWYqKpGuu8VnnDjnEZ2/Mhv1/8mSfjXDaNOmJJ6SzzkrPdt98Uzr+eOn++30GvmwyYoTv71Vp29SpPlPTlVf6LIOpVlgodevm5wfjxknt26d+G7XV2LH+WV+1yj9/Bx6Y6Ralx333+ffYMcf4Prfppplu0ZrMpF69/PxvxIjUzET688/SHnv47LRffOGz1WabvDxp+HA/Hyx9jfnbbyXLbLqptMMOfttxR//ZqZNfG8Vl9Wo/znz/vc+Sucsu8W0rm6VqlrRkQGlLSW3+8FgbSadUJCpVlVttyDAqbelSr9z+7LOeHXH88V54s3SBLsl7ebt186ya++/3VMMffvB09VNPjQ4r22EHT8l79914aoYks30++sjT+C+4wNO4Dz3Uh7LttJNZu3beptJjSSt7a9nSZ+g44QTPTnjgAS9Q9t13/rqtzaxZZptv7pk5NaGw5NrMn+/1XjbeuGbUB3n7bX+/nnmmeusZONDX88IL1VvPM8+kpj15eWaHHOKpvanIipkxw+s8bLSRt69zZ99fJO+lr2wx6crKzzfr2dO399//lr/sP/7hy916a2rbMGaMD0/p1Su1661JFi3yrMimTX02puq47DIfUvXll6lpW9Itt/j7f//9FX/O3Ln+XSR59kRVi7WXtmSJ78fdu/vnRvIe2GuuMXvqKT9mfPyx1yGaOtVf25oyNK6ikjUtsi0zb+pU/wzvsUfFM1GeesrPbbbbzocLZNKwYZ691aJFxWbjTKVEws+XmjbNvuyxo47y16Sqw/JOO82Hqi5alNp2mZUM54t7KG5tNX26f/fk5vo1R22XHLpYerTEPvuY3X135QtKxyl5znrLLald71df+TXYnnumZwbhyhg82OtiJt+X1q291tCll/qQ+88/j+cYUlG//OKT77Rtm33H6HRRKoakZfJW2wJGZcnP9xOq//3P0/J69/YU3KZN1wystGnjdVueecaHz2SbwkIP8Mye7XVavv7aT9Dee8/s1Vf9JPKBB3ys9bvvespsdQJd333nqZg77JCdQw3Ks3q1p4PXr282cmSmW1MxRUUeJKxMgcw/SiQ87XTrraufVlpU5Bcxm2xS9c9R6bTUytRxqIgVK7w+yY47+on1c8+ldv3lWb3ai2mHUHZRxeTJyznnxDPc9KabfP2vvpr6dWe71at9uG9ubmpqmCxd6p/z3XdPXaBkyBD/fPTqVbX3/+23/USrTh2fraWyF56//eafzZ49S+oTtG3rqedffZXdtfTisGqVB1jatcue2Vvy8vwY27RpxYfpJn32mV/ANWvm9REz4cknPQDZsaPXWcqECRO8DX36ZGb7a/Ptt1bt+h3jxsXT2fD5535MiaNG4fpk8WKfWS75PtfW4+moUdGZXceP99lIO3cuuXbq0sXsjjsyO5PjlCl+Hti1azydHQMH+vf5SSdlxwQKM2Z4EoDkAaOBA6s/uUtcxozxgNu++8bfoZuNCBjVcMnsnuHDvYfg++9r7wG/Oj780E/GDjoouwqZlqd0kOLllzPdmsp56SWr1pjfwYP9+U88kZr2jBzp67v++qo9P1kLKc7Cd4lEZr7AV6zwk5OcHK+nVtqwYR7MOPjg+OpDFBSY/elP3osdZ62LbFNUVJKBU90sutKSvaj9+1d/XdOmeQbcTjtVr/DvkiVezySZEbSuWbJWrjR7/XU/qU1mpW66qdciGjmS77hhw/w1ueaaTLfEJWdfeu21qj1/2jQPmOfk+Oc2Xe9vYWFJLbXDDqt87bBUu/JKv5j76qvMtiMpVdlBRx7pGeapympYssTr77RrV3Z2OSouL6/kXPPss2tfLajp0z1Df+ut1x6MmDzZO+L/9KeS4NEuu/j53vjx6Wtnfr5n/zRrFu+IiP/8x//HG26Ibxvrsnq11+xt1Mi/42+9tWYEYZLnV3F1oGYzAkZYbyQzJSo6XXWmJYeB1MTq/IWFXiB3t92q9lrvv78PJUxlcO/0072HqbI94I884u/DeefVjM9NVSxb5hkC9eqVzKQxYYKfuHTqFH9m3oQJZg0a+PCH2voa/9HVV/vn6o47Urve5PCWJk2qF4Bbtcr336ZNU9fjOnx4Sdr5uedGP1erV3s20umn+0Wq5BeZF19s9skn2dEbmk3OPtsDLN9+m9l2vPuuv1fVnfFw2TKf7lvy4GLcF63Ll5dsL1uKby9d6kMx9twz85/3KVM8g+eqq6q/rk8/9df5wQerv65EwgPtOTmpncxifZdIlAx3PeSQzAdPU2XpUg9GN2vm5xnrMn262T33eBZJMnjUsaPPdjtuXLznJzfc4Nt75ZX4tmHm/8N551ksGfMVMWRIyXnA8cdn13DAirjxRm/7vfdmuiXpRcAI65Wbb/ZPc7ZPv/rKK97OM86ouRfQyWmgK1trI3lyWZl6KRXx88/em3HCCRV/zltv+Ulzjx7ZcUERp0WLvFetYUPPDGvXLr11s+6/31KaVZbNHnjAfq9VFcf+PWmSB0dPO61qz08kvAdN8iBOKq1c6ZkxOTk+fLp/fx9inRxevdFGPixn6NDav89Vx4IFPpQrk8GFWbM8M3DnnT3AWF2FhV7XTfJhMgsWVH+dazNjhrc5Jyc1QYxUGjDA//8BAzLbjgsu8A6EVJQ1SCS8VsyWW1Y/EBhXfRe4p5/2bPyddjKbOTPTrameggLPbsvJ8VEGlTV7th8funXz80DJs5SuucZr8qXyuPvJJ55dePbZqVtnefLzPXM8N9czVtOh9PCzbbYxe//99Gw31YqKvE5vnTrZV0swTgSMsF5JJLxnO5svTJNjrffbr2akaJYlL8+zhLp2rdzzDj/cMwviqM+RDBhW5Aty1CgPnuyxR/WG49Qkc+eadejgr1HDhqkpVFxRRUV+kbjBBpXPAitLYaH/D0OHZk/gNVlD4Nhj4y3InCxUPnRo5Z/7+OPxB9bHji2pH9GkiU97/957tW84RJyee85fv4ceSv+2Cwr82N64ccV67ivj2Wc9WLH11qkfEjJ6tGfxNGlSkk2ZTYqKvD5l69aZy/L45Rd//c8/P3XrTE6GUZ0C1ZMnx1vfBW7oUN8/NtnEa4zWVJdd5p+5xx6r/rrmzvX1HHaYB6CSxbN79fLj1Zw5VV/3okU+Lfw228QzMVFZFi/2WqPNm/t5UlznSHl5ZrffXjL87JZbava1jZm/Tzvv7B1dEydmujXpQcAI6538fA9K5ORkX4R72jTP6mjfPnsLv1XGfff50eOzzyq2/Fdf+fK33x5Pe1au9F7OnXcu/4Tzxx+953zrrde/GRFmzfJeuVRnllTEjBl+orr//lW/IPj1V++dP/XUkhnoJK+Hk+k0+5EjfejdnnvGX7B41So/Ad1uu8qdnH3xhV8sHn54/Bdl+fm+z6ciO2V9VHr4YbonuEgOX6nu7JNlGTnSvwubNEnd9/RLL3lnTPv2PplGtvrqKw8qX3FFZrb/t7957/mUKalbZ1GRTzyy445VuzDNz/caM82a1fzMl5rgu+88iLHBBh7Ir2keesiPT3HsQwsXerD+jDP8GJU8x+jc2TMkhw2reDmFRMLs5JM9qyvVs5tWxE8/lcyq3aaNZyU//rgHZ1MRQPrgg5JOyOOOq3nDz8ozbZoHDbfbLrMzuKULASOsl5Yt84P7BhtkTw/KkiV+QlXRsdY1wYoVfkA98siKLX/ccf7/x1nI8tVX/Yj26KNrf3zOHB+O1bJlZmfLWF89/bS/P3fdVbHl8/K8Ns6110ZnPGnd2rNWXnrJiyvm5PiFYqYKyr7xhgewttnGbN689GxzyBCrVB20efP8ImHLLeMbDoTUmjLFg5CVGWpbXR995AGNs86KdzszZvgw2Tp1/KKqVy+zU07x/7VnTx8qfOSRHjQ76CCfcXDffT1Dp0sXs1139c6BTp38pF7yYHRN6Izp08cvItNZdNfMsw423NAD7qmWzIh7553KP/e666xahdVRebNn+z6Uk+P1dWpKYH/wYG/z0UfH3+lRVOTZsrfd5plvdev653SDDcyOOcbs4YfLn3kxeb5z223xtrM8v/7qIy569fKgUfIcavPNvebrU09VPtAzc6bZiSfa78PPamLQsSI+/dSH9R12WO0fQk/ACOut2bP94qhNm8xHvQsKvEe/bt2qjbXOZrfe6keQdQXmfvjBl+vXL972JBJ+0dCy5ZrFnJcv9wuNhg196ALSL5Hw4Vr16/tnYm2mTfNi5D17+sWN5PvOAQd4dto336xZX+Dzz31/z831zLd0DVGbO9ezmyQ/+U5lr31FnHyyv5br2m5Bgdc0qF/fT4BRcySPsenICpw7178zO3RIz/CJ5cvNzjzTg5hbb+3b7dTJA0G77urH67328kDRAQd44OiwwzyQ1KOHHyNOOMEDTf361ZyhEPPmeefJIYekdzhtcrKNceNSv+78fH8f9923cs/7+GMPUPbpk/o2oXzJ/U/yfe/TTzPdovL98INnJe6yS3qHdyUtXWr25pteuH+rrUqCL9tua3bppWaDBpWUOJg82Yf0HnBA9gyxTCS8w/rhh/28JZl9JHlH6jnneOB31qy1P39tw89qSqCxqp580l+fvn0z3ZJ4ETDCeu2HH3wMajpmgipLIuHFb7O5rlJ1LF7sX+Annlj+cqef7l+e6chs+PprPwH9619L7isoMOve3Xuzq9IDitSZO9dPVHbd1U9AVq70YSmXX16S3iz5xccFF/gJWkWy0hYsKJkZ6ZhjPLU8LomE2Ysv+tDGevW8BzET9Xlmz/ag2hFHlH/hmSw2/NRT6WsbUiMvz7NTt9gi3oukoiLv2KhfP/Ozs60PksXxBw5Mz/aSGcHdu8e3jf79rVLD1BcsMNtsM88QW19qCWajwYP9+zY5I2KcWeBVNXeuB2natMmOYYuJhJc3uP9+36caNvTXr14975zZYQevH5QNbS1LUZHZ99/7/9Czp7c3ef613XZ+/vXyy56ZP3RoyflZz57pmzAlG1x+uf/fTz6Z6ZbEh4AR1nsff+xZB926Zab3MTk71NVXp3/b6XL99R6gKWuoXXIK3yuvTF+bkin/EydGi6GnokAiqm/gQH8/dtjBh9xI/vOIIzxDKPm+VVYi4dOh5uaatW3rtVJSbfZsD0hJXq8o0/VSkrXEyhrOkXytL7ggve1C6owYEX8v5x13+DYeeSS+baBEQYHX/NlqKw+axy0ZoIozi2TFCu8MOOqodS+bSPgw9dxcsh6zwfLlfnwJwYN4mahzWJZVq3wmvgYNMlMLqCJWrfKgypVX+n5dp44PVa9JCgu9w/Wuu3wfTmZ4J29bb2327ruZbmX6FRT40Ojc3IoHw2saAkaA+cwdkme5pDP9e9Ag/9Lo2TNzUyOnw9y53rvSu/faHz/vPO+1/uWX9LVpzhzPfOre3eyf/7TYZ4VC5V16qWf/9e3rPZypvGj68ktPsc7JMbvzztTsf4mE1yRo1sxPXO++OztSzQsKvL7TZpt5/bbSJk70k7499qg5w3Wwdhde6N8nY8akft0jRvi+cuKJ2TPj4Ppg2DD/bvrnP+PdTn6+B9ArO1ysKpLD3taVpfbYY1apenZIj9GjPeAh+ZDn6swQlgqJhNffqWk1rmrDUK2CAp8o4447vGOqNvxPVbVokWddtWqV+TIncSBgBBRL1oG4/vr0bO/bb70w3m67rR+p1pdd5hk9fzyQ/vyzR+Uvuij9bfrPf0p6Rnr35kJofbNkSUlhxiOPrF4x6hkzPPspWVh30qTUtTMVRo1ac+al5cs9INeyZXanxaNiFi/24Ri77praApwLF3owoV27zA3dXp+dfLIHoOO8CBkwwI9dgwbFt42kRYv83KdXr7KXGT/eO5kOPbR2d6bVVHl5Zjff7MOrmjf3jpJMnT/ddJN/dm+9NTPbB5ImTvQyJzvvnJkaWnEiYAQUSyQ80yUdw5J++cXrTWy2WfqnQ86UmTM9MHTJJdH7L7/cA0mZGO+cl+eZF0cfnZn6Msi8RMILPNavb7bppj7jWmWf/+ijnqXTuLHX6MjWC5zzz/cskW+/LZnOt04dn/UKtUNyFsh77knN+hIJz4CtW9d7kpF+M2d6Edm4ZsIrKjLr2NEvctJ10X/VVX7sWdsMUqtX+/dyy5bpzTpG5U2YYLbffn7MOeSQ8mcEi8PLL/u2zzyTDj9kh8GD/dh23HHZey5YFQSMgFKShY9zcuIbh7tihc/s0rjxumcOq23OPdcvzH/91f9e11C1dMiGIUPIvG++8ZlM6tTxHsuKfC5++slnZZK8iOXUqfG3szoWLvR06b339mEekg/HQ+2RSHhtifr1fZrns87y4UwDBph98okHHypzzEsWKb777tiajApIDuOKYxbVZA2zF19M/brLMnu2Z6dcfPGaj11xhbeHySdqhqIi73TZcEM/n7vrrvRMMT5qlB/n9tuP4dTILvfea2mZ9TmdKhowCr5s9unSpYuNGTMm081ALfLbb9IBB0g//ih98om0++6pW3ciIZ18sjRwoPS//0lHH526ddcEkydL228vXXWVdOed0nXX+c8JE6QOHTLdOqzvli+XLrpIeuEF6eCDpeefl9q0WXO5REJ66CHp2mulnBzp7rulPn2kENLf5sp65hmpd2///fjjpddfrxntRsX9+qv0979LEydK06dLs2f7wNuk3Fxpyy2lrbaS2rWL3rbaStp4Y/9MfP21tPfe0qGHSu+8w+ckk1avlnbYQWrQQBo3zt/DVDCT9txTWrjQz3nq1k3Neivi/POl557zz2jr1n7fkCHSEUdIf/mL1L9/+tqC6vv5Z+nii6VBg6QuXaQnn5R22SWebc2YIe2xh7TBBtIXX0gtW8azHaAqzHxf2GUX6cILM92a1AghjDWzLutcjoAR1ie//uonynl50qhRfhKdCtddJ91xh3TPPdJf/5qaddY0p53mJxTffit17iwdeaT0yiuZbhXgzKSnn/YLlg039ODRIYeUPD5pknTuudLnn54VfsUAACAASURBVPtn97HHpC22yFx7K8vML8h++UUaMUJq0iTTLULc8vKkmTOladP8Nn16ye/Tpknz50eXb9TIv/MWLvQAwrhxXJBlg7fflo49Vrr3Xqlv39Ss86OP/Pj26KPSBRekZp0VNXmydxRde610223SvHnSzjtLrVpJX34pNWyY3vag+sykV1+VLr1UWrxY+tvfpH79PNCZKsuWSfvu6wGqUaOkjh1Tt24Aa5fxgFEIobWk181s/xDCZpK+kDSl+OGTzGx+2c8mYIT4jB/vX0qtW0vnnOM/N9645OfGG0v16lV8fU8/7eu58ELp4YfX397a777zqHu7dn6xMm5cfL1QQFX93/95NuCECdL11/tJb//+JSe/990nnXlmzdyPi4r8xD6d2QTIXr/95j32pYNI06ZJS5ZIt98u7bVXplsIyffZ7t2lkSM9cJ3MyqmOQw7xY920aam9qK+ok0/2rKKZM6VevTyANWaMtOOO6W8LUmfhQs8kHzBA2m476YknpK5dq7/ewkLpmGOkDz6QBg+OduYAiE9GA0YhhOaSXpK0sZntFkI4XlJrM3ukousgYIQ4ffKJdOKJ0oIFa3+8efNoEKl16zUDS61bS1OmSD16SAceKL37burSyWuqo4/2LKMePXyoA5CNVq70ntKnnpKaNfML6GOPlR55RNpkk0y3DsD6ZtIkD6accYYfl6rjq698WM+//y1dfXVq2ldZX3/tw/67dPFA0YMPSpdckpm2IPWGDvWhh9OnS23b+jlxq1Z+S/6+tvsaN177+i6/XHrgAf8Ori1DfYCaINMBoyaSgqT/mVm3EMK/JR1cfN9gM7t+XesgYIS4mUkrVkhz5/pt3rzyfy5evPb1dOrkQ0CaNUtv+7PRmDHeU/ree36iCGSzF17wYaRXXy2dckrNzCoCUDtcc40Hea66yrME8/NLbgUF0b/Lu3/+fD+/mTEjs0NTDz/cM0Z69PBhdxxfa5cVKzw7d+JEP0+eP99/zpvntbnWplGjNYNJRUVeV7BvXx+WCSB9Mj4krbgRw4sDRgdKGiNppaQPJV1uZt+tZfnzJZ0vSW3btt19xowZsbUNqKzkiVjpINLSpdJJJ5GVAAAAqm75cmmffaQffvBs5Xr1yr6V93hurmdMnnBCZv+fceOkW27xrJFWrTLbFqRPsjM2GUAq/bOs+3r29KBRTk6mWw+sX7ItYFTfzPKK77tH0ggze6O855JhBAAAgPVF8pScbBwAQNwqGjCqk47GSBoSQtgkhNBI0mGSfkjTdgEAAICsFwLBIgBAdknXXCr/kjRMUr6kR83sxzRtFwAAAAAAAJUUa8DIzLoV/xwmafs4twUAAPD/7N15vE31/sfx9/cMpmPIXJRZxhwhabqGyJCIRJq76ObSVUmaS9GgQVEyhAYp3aKchJLcFBmrnyHzTMJxHOMZ9+f3xz5nZxc6jj2c4fV8PPbDHtZe67M+1ll7rc/6ru8XAAAAgRGqW9IAAAAAAACQS1AwAgAAAAAAgB8KRgAAAAAAAPBDwQgAAAAAAAB+KBgBAAAAAADADwUjAAAAAAAA+KFgBAAAAAAAAD8UjAAAAAAAAOCHghEAAAAAAAD8UDACAAAAAACAHwpGAAAAAAAA8EPBCAAAAAAAAH4oGAEAAAAAAMAPBSMAAAAAAAD4oWAEAAAAAAAAPxSMAAAAAAAA4IeCEQAAAAAAAPxQMAIAAAAAAIAfCkYAAAAAAADwQ8EIAAAAAAAAfigYAQAAAAAAwA8FIwAAAAAAAPihYAQAAAAAAAA/FIwAAAAAAADgh4IRAAAAAAAA/FAwAgAAAAAAgB8KRgAAAAAAAPBDwQgAAAAAAAB+KBgBAAAAAADADwUjAAAAAAAA+KFgBAAAAAAAAD8UjAAAAAAAAOCHghEAAAAAAAD8UDACAAAAAACAHwpGAAAAAAAA8EPBCAAAAAAAAH4oGAEAAAAAAMAPBSMAAAAAAAD4oWAEAAAAAAAAPxSMAAAAAAAA4IeCEQAAAAAAAPxQMAIAAAAAAIAfCkYAAAAAAADwQ8EIAAAAAAAAfigYAQAAAAAAwA8FIwAAAAAAAPihYAQAAAAAAAA/FIwAAAAAAADgh4IRAAAAAAAA/FAwAgAAAAAAgB8KRgAAAAAAAPBDwQgAAAAAAAB+KBgBAAAAAADADwUjAAAAAAAA+KFgBAAAAAAAAD9BLRg558o75xZkPI92zsU5535wzv0zmMsFAAAAAABA9gWtYOScKynpXUkxGW/dK2m5mV0hqZtzrliwlg0AAAAAAIDsC2YLo3RJPSQdynjdQtLHGc+/k9QkiMsGAAAAAABANgWtYGRmh8ws8YS3YiTtynh+QFL5P3/HOXe3c26Zc27Zvn37ghUaAAAAAAAATiOUnV4fkVQ443nRky3bzMaZWRMza1K2bNkQhgYAAAAAAIBMoSwYLZd0ZcbzWElbQ7hsAAAAAAAAZFFUCJf1rqQvnXNXSaoraXEIlw0AAAAAAIAsCnoLIzNrkfHvNkltJP0gqbWZpQd72QAAAAAAADhzoWxhJDPbrT9GSgMAAAAAAEAOFMo+jAAAAAAAAJALUDACAAAAAACAHwpGAAAAAAAA8EPBCAAAAAAAAH4oGAEAAAAAAMAPBSMAAAAAAAD4oWAEAAAAAAAAPxSMAAAAAAAA4IeCEQAAAAAAAPxQMAIAAAAAAIAfCkYAAAAAAADwQ8EIAAAAAAAAfigYAQAAAAAAwA8FIwAAAAAAAPihYAQAAAAAAAA/FIwAAAAAAADgh4IRAAAAAAAA/FAwAgAAAAAAgB8KRgAAAAAAAPBDwQgAAAAAAAB+KBgBAAAAAADADwUjAAAAAAAA+KFgBAAAAAAAAD8UjAAAAAAAAOCHghEAAAAAAAD8UDACAAAAAACAHwpGAAAAAAAA8EPBCAAAAAAAAH4oGAEAAAAAAMAPBSMAAAAAAAD4oWAEAAAAAAAAPxSMAAAAAAAA4IeCEQAAAAAAAPxQMAIAAAAAAIAfCkYAAAAAAADwQ8EIAAAAAAAAfigYAQAAAAAAwA8FIwAAAAAAAPihYAQAAAAAAAA/FIwAAAAAAADgh4IRAAAAAAAA/FAwAgAAAAAAgB8KRgAAAAAAAPBDwQgAAAAAAAB+KBgBAAAAAADADwUjAAAAAAAA+KFgBAAAAAAAAD8UjAAAAAAAAOCHghEAAAAAAAD8UDACAAAAAACAHwpGAAAAAAAA8EPBCAAAAAAAAH4oGAEAAAAAAMBPyApGzrko59x259z8jMdFoVo2AAAAAAAAsi4qhMtqIOlDMxscwmUCAAAAAADgDIXylrRmkjo655Y45yY450JZrAIAAAAAAEAWhbJgtFRSazNrKilaUoc/T+Ccu9s5t8w5t2zfvn0hDA0AAAAAAACZQlkw+j8z+y3j+TJJNf88gZmNM7MmZtakbNmyIQwNAAAAAAAAmUJZMHrfORfrnIuUdL2kX0K4bAAAAAAAAGRRKPsRekbSFElO0gwzmxvCZQMAAAAAACCLQlYwMrNV8o6UBgAAAAAAgBwslLekAQAAAAAAIBegYAQAAAAAAAA/FIwAAAAAAADgh4IRAAAAAAAA/FAwAgAAAAAAgB8KRgAAAAAAAPBDwQgAAAAAAAB+KBgBALIsLS1NZhbuMJBD/fjjj2rRooXi4+PDHQoAAMjl4uPj9dxzz3FcEUYUjAAAWZKQkKD69eurc+fOSklJCXc4yEFSUlL0+OOP64orrtCWLVu0c+dOJSYmsp2EmZnp4MGDWrVqlebMmaMJEybo0KFD4Q4LAIC/dfDgQV1zzTV67LHHdO211+ro0aPhDilfomAE5DJmpqSkJCUkJGjXrl3auHGjVq5cqf3794c7NORhZqbevXtr48aNiouL06xZs8Iaz4EDB/TNN9+ENQZ4rVy5UpdeeqmGDRumO++8UytXrlTp0qVVrVo1jR07Ntzh5Vkej0d79+7VihUrFBcXp7feekuPPfaYNm/eLEn673//q2LFiqlkyZK66KKL1K5dO9/fMAAAOV18fLwSExP10EMPaenSpbrxxhuVmpoa7rDynahwBwDkN0lJSVqzZo22b9/ueyQkJKh379667LLL9PPPP2vAgAE6fvy432PSpEm65pprFBcXp86dO/vNs3DhwnrxxRd17733hmmtkNe99dZbmjZtml566SW1bdtWF110Udhi2bFjh66++mrVrFlTV199tSTpvvvuU7Vq1XTllVeqQYMGiori5y1UnnrqKf3222+aMWOGrrvuOklSsWLF1LBhQz3zzDO64447VLx48TBHmftt3rxZTz/9tPr06aOrrrpKc+fOVdu2bf2miYyM1FVXXaVq1aqpZs2a6tOnj84//3zfo2LFijr//PO1f/9+rVmzRv/4xz/CtDZA7rFnzx4tXrz4L8deAIIjOTlZBQoUUPXq1bVmzRoVKFBANWvW1IMPPqh169apfv364Q4xX+GIGgiw5ORkLViwQDt27PArCvXu3Vs9evTQhg0b1LhxY9/0BQsWVOnSpdW+fXtJ3gN+SSpVqpQKFy7se5QtW1aSVK9ePT3//PN+n5UuXVrt2rUL/coiXzAzzZkzRx06dNADDzygiAhv49Tvv/9eX375pYYNGybnXEhi2bJli1q1aqUDBw5o5MiRkqRjx45p2rRp2rFjhyQpJiZGzZo1U//+/XX99deHJK78ZuPGjYqOjlblypU1ZswYOed8+yhJcs7phRdeUNOmTfXKK69oyJAhYYw299u1a5euvvpqxcfH+7bpBg0aaNSoUX6FoHLlyvl+Qxo2bKiGDRuedH59+vTR/PnztWrVKlWsWDFk64Hc4fHHH9f333+vb7/9NmT79pwqJSVFN954o3766Sdt3rxZW7duVd26dVW0aNFwhwbkSUlJSerUqZNq166tkSNHqkCBApKk3r17q3Pnzn7HGggRM8uRj8aNGxuQkyUmJtqTTz5pXbp0scaNG9vzzz9vZmYJCQkmySSZc84qVKhgl156qX3wwQdmZnb06FGbNm2aLVu2zPbu3Wsejycg8Xg8Hvvss89sz549AZkfcKL09HQ7fPiw33uDBw82SfbEE0+EJIZ169ZZxYoVrWTJkrZ06dK/fL5t2zabMmWK9evXzxo2bGgTJkwwM7P169dbbGys9evXz6ZMmWLbtm0LSbx5kcfjsdGjR1uRIkWsU6dOfzt99+7dLSYmxn777bcQRJc37d+/3+rWrWvFihWzZcuWBWSe69evt8KFC1uHDh0C9huEvOGLL74wSfbggw+GO5QcoX///ibJPvzwQ/v999+tSJEi1qFDB0tNTQ13aECek5ycbB07djRJNmnSpFNON3z4cBs+fHjoAsujJC2zLNRlwl4YOtWDghFyshkzZljFihXNOWf16tWz9u3b28SJE83Me0L1v//9zzZv3mzJyckhi2nr1q0WFRVl99xzT8iWibzN4/HYCy+8YDt27Djl57169TJJ9tJLLwU9nm7dulnZsmXtl19+OaPv/fTTT9a6dWsrWrSor5h7/vnn2+LFi83MW+Q9cOBAMELOU3bu3Glt27Y1SdamTZtTbhcnWr9+vUVFRdkbb7wRggjznsOHD1vTpk2tYMGC9u233wZ03q+//rpJ8hVWgd9++83Kli1rDRo0sOPHj5uZ5evCyLvvvmuSbODAgb73xowZY5Ksd+/eFFuBAEpNTbVu3bqZJBs9evQpp/N4PNajR4+/LSrh71EwQlDs378/3CHkCHfeeafVr1/fd8KZU/Tv398iIyPt119/DXcoyAMmTZpkkuy555475TRpaWnWvXt3k2Rjx44NajyJiYm2bt26bH8/NTXVli9fbiNHjrQePXr4WuO99NJLviJS+/btbfDgwTZ58mTfCRPMFi1aZOecc44VKVLERo8efUYnShs2bAhiZHlbcnKy9ezZ02bMmBHweaenp1uLFi2sePHitLqDpaenW7t27axQoUK2evVqS0tLsw4dOtj9998f7tDCYtu2bVaoUCFr2bLlX4pmjz32mEmyIUOGhCm6s3Ni6/Z58+bZXXfdZTfffLPdcMMN1rFjR2vTpo2vVei4ceOsdu3aVrVqVatQoYKVKlXKYmJifOcDH330kQ0cONDmzp1rSUlJYVsn5H7//Oc/TZK9+uqrfzttUlKStW7d2iIjI4Py+5hfUDBCwGS2kpkzZ44VKVLEfvjhhzBHFHoej8fef/99++mnn8zM7NChQyFtPZRVe/futeLFi2fpVhHgdNasWWNFihSxFi1aWFpa2mmnTU5Otvbt21vPnj0DfsV10aJF1qlTJzt69GhA53uin3/+2V588UW75ZZbrEGDBhYdHW2RkZG+g9+XX37Zbr75Znv++edt5syZtmPHjnx3ZfnQoUPWo0cPW79+fbbnsXfv3gBGlLelpqZafHx80JezefNm69mzJ7cyw1avXm0xMTH25ptv+t7r1auXRUdH26ZNm8IYWfi89957J91veTweu+OOO0ySffPNN2GILHsSExPtscces8KFC9vMmTPNzOydd96x888/36pXr25169a1iy++2Jo1a2bbt283M7Np06bZjTfeaLfeeqv16tXL+vXrZw888IAdOnTIzMweffRRi46ONkkWExNjnTp1snHjxoVtHfOCb775xqZMmWLLly//S1cAeVlcXJy98MILWZ7+0KFD1qRJEytUqJB9//33QYws76JghIDYt2+fXXLJJfb6669bYmKiVa5c2WrUqGFHjhwJd2ghs3XrVmvXrp1Jsj59+oQ7nL/13HPPmSSbP39+uENBLnXs2DGrX7++lS1b1nbt2pWl7xw/ftxXWEpPTw9IHPPnz7eiRYta9erVbefOnQGZZ1akpKT4tWR6/PHHrVKlSr7b2SRZ7dq1fZ9//fXXtmzZMktJSQlZjKEwY8YMa9WqVUBaWs2cOdMKFChw0r6n4C89Pd1uv/12q1OnTlALpcCfbd++3a8YvmvXLitSpIh17949jFGFVmpqapZasqakpNjYsWMD9nsXTCkpKfbGG29Y2bJlTZL17NnTNm/eHLD5Hz582D7//HO75557rHLlytasWTPfZ2PGjLGvv/6a1ken4fF4bP78+b7C/dSpU/2ONypUqGAtW7b0HY9t377dNm7c+LcX83IDj8djy5cvz/b39+7da7Vr17bx48cHMKr8g4IRztq2bdusdu3aVqhQIfv888/NzOzbb781Sda/f/8wRxd8aWlpNnLkSIuJibGYmBgbOXJkrtg5Hzt2zJo1a2ZxcXHhDiWs1qxZE9IiQ16S2dx+1qxZZ/zdnTt3WsOGDW3evHlnFcPs2bOtcOHCVqdOnSwXrYItISHBFixYYG+++aa99tprvvfr1KljkqxQoUJ2+eWX2/3332+zZ88OY6RnJzEx0dc0vEGDBgG5XSkxMdHKlCljrVq1ynets86Ex+Ox//znPybJnn322ZAtd8uWLdauXbt825IkPzt27Jh99NFHp/y7fPLJJ02SLVq0KMSRhcegQYOsSJEitmXLlix/Z+vWrb4W6DlR8+bNTZI1b97clixZEtRleTweX5+AycnJVrx4cV/ro+uuu85Gjx7ta72U3/3+++82fPhwu/DCC02SDRs2zMy8eVu5cqV98sknNmzYMLv99tutWbNmduzYMTMzGzhwoEmyAgUKWN26da1Lly42ePBg3zlKTrwD4mQ8Ho8NHjzYIiIizmq7PLEYmRsKuDkJBSOclTVr1tj5559vxYsXt//9739+nw0YMMAk2dy5c8MUXWhkdmzYtm1b27p1a7jDOSP5+YQsLS3Nhg4dapGRkVaoUCF79NFH6YvmDB08eNA+/PDDbH13//79Vq9ePYuJibEff/wxW/PIbI0SGxtrv//+e7bmEUpbtmyxqVOn2gMPPGBXXHGFFSpUyO68804z8/4t3nTTTTZ06FD7+uuv7eDBg2GO9vRmzZpllStXtoiICHvkkUcCelX4tddeM0k2Z86cgM0zr3n66adNkt1///0h3Y9v377dihcvbs2bN+eAO5/p16+fSbIVK1ac9PPDhw9b+fLl88Wt7pktO/r27Zvl73g8HrvsssusfPnyAW21c7YWL17sa/X6ySefWFxcXFiODY8cOWJxcXH273//26pWrepXGDl06JDNmTPHVwjJL9LT061Hjx4WFRVlkuzKK6+0d999N8stSletWmVvv/22DRo0yDp37my1a9e2ihUr+j7v3r27lS5d+oxu7wqHzN+7f//73wHZNmfPnm2NGjWyffv2BSC6/IGCUR7g8XgsLi7OunfvbtOnTw/Zcg8cOGBlypSx8uXL288///yXz48ePWp16tTJk8MZJicn+5oiJyUl2X//+99cW3xJTk62MWPG5KtiSUJCgrVs2dIkWY8ePeyWW26xRo0a5YqWYTnB7t27A7K97N6926pVq2YlS5Y84xHNzMzWrl1rHTt2DEkfLsGQkpLii33fvn1Wu3ZtX9Ny55zVqVPHpk6dambeAmdOGYXI4/HYpZdeajVr1rSFCxcGfP5JSUlWpUoVa9iwIUWJk5g4caJJsjvvvDMs+clc/omt55C3zZgxwyTZAw88cNrpFi9ebImJiSGKKjxWrlxpMTExdvnll59xC401a9ZYyZIl7cILLwz7yer69evthhtuCMlAFGfK4/HY2rVrfR1qT5s2zSRZZGSkNWzY0Pr06WPjxo0Lew6DYceOHfbuu+/6Xt955502cOBAW7NmTUDmf+JvxuTJk61169bmnAv46JqB8uKLL5oku+uuuwL2e/fdd99ZoUKF7JJLLslXfT+dDQpGudwvv/xiV199te82B0m2atWqkC1/4sSJtnHjxlN+nheLEEuWLLGLLrrILrjggjxxtSPz9sFQDHeeU6SlpVnHjh1t0qRJvkJf5v9lfHy8tWjRIs+3jMuu5ORka9KkibVs2TIgRdLNmzdbxYoVrXz58lnuKPnHH3/MtQXav3PgwAGbM2eOPfPMM3bttdfal19+aWZmP/zwgxUuXNiuvPJKe+WVV0J+UrZv3z677777fC25duzYEdTm7JMnT7aoqKig3xaRG/322282aNCgsBUQPR6PdezY0QoXLnxWoxEid9i9e7eVKVPGGjZsmOWWhKmpqTmmwB1IBw8etBo1ati5556b7VugFyxYYAULFrTLLrssLMeQv//+u/Xr18+ioqKsaNGi9swzz+T4/kaPHj1qM2fOtMcee8zatGlj55xzjknyFVHi4uJswIABNnnyZFu3bl2uu9CQkpJi06dPtw4dOlhERIRFRET4imXBduTIEatRo4ZVrlw5xxV7f/jhB19fWoG+oPv5559bZGSkXXPNNbnm1rxwomCUix07dsxKlSplpUqVspEjR9rRo0f9+hL59ttvg/KDPXXq1DMe7eHbb7+1r776KuCxhNLRo0dt4MCBFhERYRUrVsxTwzO2a9fOzjnnHN/wp3lRUlKSPfLII74f4VMVHJYvX25VqlQxSdaxY0dbu3ZtKMPM8R544AGTZNOmTQvYPNesWWNXX311lkZgGjt2rDnn8t3oKr/++qsNGDDAGjdubJKsRIkS9tBDDwX91rXk5GR7+eWXrUSJEhYZGWkfffRRUJeXKT09nX5y/mTJkiU55iR89+7dVrJkSevZs2e4Q0EQeTwea9u2rRUuXDjLLRz27dtnderUsZEjRwY5utBLSUmx++6776xHWvrkk0/MOWcPPfRQgCLLuquuusoiIyOtb9++uXbUQ4/HYxs2bPAVhl588UUrXLiwr4VuiRIlrHXr1r5CwNGjR3PsRabvvvvOzj33XF+n1Y899ljIb1lctGiRRURE2ODBg0O63L/j8Xhs6tSpQRsoZMKECb6CVG4rMoZaVgtGzjttztOkSRNbtmxZuMMImePHj2vy5Mnq1auXIiIiNH/+fMXGxqpkyZJ+061du1Z169bVxRdfrHHjxqlx48YBWf7o0aPVv39/tW/fXjNnzszSdzwejxo3bqw9e/Zo1apVKl26dEBiCaXdu3frqquu0ubNm/Wvf/1LL774okqUKBHusAJm1apVio2N1X/+8x+NGDEi3OEE3Nq1a9WzZ0/9/PPPGjt2rO6+++7TTp+UlKSRI0dq6NChOn78uPr27asRI0YoMjIyRBHnTF988YWuu+469e/fX6NGjQrKMlJTU3Xo0KGT7idef/113XffferQoYM++eQTFS5cOCgx5HRLly7Vyy+/rAULFmjz5s0qVKiQDh8+rGLFigV0OZ999pkefPBBbdq0Se3bt9fLL7+sunXrBnQZWbFv3z6VLVs25MvNSebNm6f27dvrwQcf1LBhw8IdjiRpyZIlqlevnmJiYsIdCoLoiy++0IEDB3T77bdnaXozU+vWrfXLL79o06ZNeeZYKSkpSYUKFQrY/KZPn67WrVsHfL/9Z+np6Xrvvfd0/fXXq2TJklq+fLliYmJUu3btoC431NLS0rRmzRotXbpUS5cu1e7duzVjxgxJ0vXXX6/FixfrkksuUc2aNRUREaHKlSurf//+krzHFnv27JEkOefknFP16tX1z3/+U5I0YsQIJSQk+D4zM9WpU0c33XSTJOnJJ5/U4cOHlZ6e7ns0a9ZMd955pyTprrvuUnJyst/nvXr1UseOHbV3717dfffd6tWrl9q3b6+oqKgQZ84rLi5OLVu2VNGiRcOy/BN99NFHqlu3rho0aBD0Zb3wwgvauHGjxowZE7bc5wbOueVm1uRvJ8xKVSkcj/zSwsjj8diUKVN8Qzb/XQsfj8djH3/8sZ177rkWERFhAwYMsEOHDp3V8jM7HbvuuuvOuBntzz//bNHR0dajR49sxxBOHo/H+vTpk6eHoO/Vq5dFR0ef9hbD3Mbj8diECROsSJEiVqZMmTMeEe7333+3e+65x7p16+Y3z/xox44dVqpUKbv44ouDeqtpz549LTY21jd6Sqbnn3/eJFnXrl1pPpwh8zaCQhtEcQAAIABJREFU1NRUq1atmrVr186++eabgG2j3bt3t7p164Z1JLenn37aypYtm+Oayv9Z5nDRX331VcCHhV68eLHFxMRY/fr1c2R/XceOHbMdO3aEOwwE2Nlc1V+xYoU553Jci4XsmjFjhlWpUiXLt02fiSNHjtinn34a8Pl6PB778ssvrX79+ibJRowYEfBl5Bbvvvuu3XbbbVarVi0rUqSIFS5c2Jo3b+77vFGjRlagQAGLjo62qKgoi4qKsrZt2/o+z+yE+8RHly5dfJ9XqlTJihUrZuecc46VLl3aypUrZ/fee6/v89q1a1uNGjWsVq1aVrduXbvoooty7CjSR48e/cvxVyhNnTrVIiIi/I67g8nj8fiOmbLamXh+JG5Jy/kWLlxozZo1M0lnPAz1wYMH7d///rc556xmzZrZOgBIT0/3jY5xxx13ZLtJ/NChQ01SyG5pOFvr16+35s2bn9GQqbnZrl277KqrrjppB+a5VeZoS61atTqrIdczm6quW7fO6tata9OnT893haMNGzbYlVdeGZQD5hPNmTPHChQoYM2aNfN1Rrh27VqLioqym2++OcfckpOTHDt2zIYOHWrly5c3SdaoUSObMmXKGedq9+7d1qtXL1u5cqWZeftTCne+lyxZYpLsySefDGscmeLj423+/Pk2atQou/vuu+3jjz82M7NNmzb5TiSKFi1qN9xwg73zzjtnfeC9cuVKK1WqlFWrVs12794diFUIKI/HY1deeaU1adIk7NsKAufo0aPWoEEDGz16dLbncdttt1nBggVt27ZtAYws9NatW2fFixe3Ro0aBaXPoSeffNIk2QcffBCweT788MO+W+urV6+eqwdmyYnyai5TU1MtNjbWunTpEpZ1/OyzzywqKsquvPLKkPertWPHDqtataqNHz8+pMvNLSgY5XBpaWlWvXp1O++882zixInZ7vRr0aJFNnHiRDPz7uj27t2b5e+mp6fbrbfeagMHDjyrezxTU1PtkksusVKlSuX4IbBnzpxpJUqUsNKlS5/1veoIvcwTl/j4eHvttdcC1lnekiVLrG7duibJWrRoYcuXLw/IfHOLUB1AfPrppxYREWFXX321rzXT4sWLGcXubxw/ftzGjx/vG20tqy3qMgtOMTExFh0dbRMmTAhypGfmxhtvtJiYmJD2t5GUlGQ///yzbwjxlJQUXwvfzEfJkiV9wxGnp6fbwoUL7YsvvrC7777bKlSoYJJ8ffdt377d1qxZc0Z/Q2lpaXbhhRfaeeedl6P7c/r4449Nkj377LPhDgUBcs8995hz7qwGf9i2bZsVKlQoLP30BMqhQ4esbt26VqZMGdu6dWtQlpGUlGTNmze36OjoM+4f1MwsMTHRpk6dao888ojvvR49eljHjh1t4sSJtMjFGRk+fLhJ8hupLRRmz55tBQoUsEsuuSQsLYqTk5Otbdu2FhEREdIRx3MLCkY5UGJioj377LO+pnErV64M6LB/06ZNs6JFi9qIESNOe0Xw8OHDtn37djOzgJ2o/frrr/b666/n2M7F0tPTbejQoeacs4YNG+ab1kUn2r9/v40YMSJXXkFJS0uzYcOG2WWXXRa0g6TU1FQbPXq0lSlTxpxz1qdPn1yZq6yaO3eu3XzzzWd1S2t2vPPOOybJhgwZEtLl5gXp6ek2e/Zs3352+PDhNnjw4JO2svv44499hZAuXbrYhg0bQh3u31q/fr1FRkZav379grqcUaNG2U033WT16tWzqKgok2Tt27f3ff7AAw/Y8OHDbdasWbZz587T/t2np6fbsmXLfPuhhx9+2He1//7777d58+ZlqcXv4sWLfS2+crIePXpYdHR0nmqhml9Nnz7dJNmgQYPOel6h6qg98/arX3/9NWC/xx6Px7p162YRERHZKuSciYSEBKtXr54VL17cfvnll7+dfvfu3fbGG2/YNddcY9HR0SbJypYt6xsEIS8fkyC40tLS7KqrrrLixYuHtHVg586dLTY2Nqy3XR8+fNiaNm1qBQsWtL59+/pux/d4PPm+BS0FoxwkLS3Nxo4da+XKlQv4KEQn2rx5s7Vv395368KyZcv+Ms2+ffusadOmVrt27aD1Tp8T//heffVVk2S33HJLvr2Xddy4cSYp11XYd+3aZa1atTJJ1qNHj4AWWU/m4MGD9tBDD/n10RDovkvCbc+ePVa+fHmrU6dOWIbd/eCDD/LkSDuh9q9//csiIiIsOjra7rrrLlu1apXvs4cfftguvvhi+/bbb8MXYBb07dvXypUrF/Dt8MSLFy1atLDKlSvbddddZ48++qh9+OGHARs2fufOnfbWW29Zhw4drGDBgibJKlWq5Fv+ib+H8fHx9t577wVkuaGyf/9+K1++vMXGxtKiIRfbtWuXlS5d2ho1ahTQ/8dDhw4FvYgxcOBAk2RVqlSxe+65xz777LOzutBx5MgRa9Wqlb300ksBjPLUtm/fbhUrVrSLL774L7nyeDy2YsUK30i248ePN0l24YUX2qBBg2zBggW0wEXAbNq0yYoWLWotW7YM2QX+48eP54iRmvft22ft2rWzEiVK2DPPPGNm3mPh6Ohoq127tnXq1MkefPBBGzduXJ7q8/XvUDDKIb766iu76KKLTJJdccUVtmTJkqAuL3OowsxOsU+8ir99+3arXbu2FSxY0D777LOgLP/rr7+2KlWq5Jh72zN/nA8fPmyTJk3K11dnUlNTrU6dOtnu8yocvvjiCytTpowVKVLEJkyYEJb/v3nz5tn5559v7733Xo5tQXcm0tPTrU2bNlaoUKFc0cIBp7dx40br16+fb+jhzILw8ePHc8WJxv79+wPeEeePP/5o9erV87WKCdX+7vDhwzZ9+nS//mFiY2OtRYsW9sorr1izZs2sQIECIR9a+Wx9/vnndumll+bIvpaQNR988IEVL17c1q5dG7B5/t///V+2Bp3IioSEBF8BfPfu3TZmzBi7/vrrrWjRoibJ6tev75t227ZtZ3xskJqaGtLjiZUrV/pOQpOTk+2rr76yfv362QUXXGCS7K233jIz73oH8v8I+LPx48db06ZNg1rEWb58ubVp0yZHDubg8Xh8xwS///67Pfzww9a1a1erX7++76LPpEmTzMw7sFPjxo2tZ8+e9tRTT9nkyZNtyZIleepckoJRDuDxeOwf//iHVa1aNeQd0yUkJFjfvn1typQpZma2Zs0au+CCC6x48eJBHRFs8+bNFhMTY61btw77yXVcXJxdddVVYWlBkVPFxcWZJHvjjTfCHcrfSk1NtXr16llsbKytWbMmbHEsXbrUmjRpYpKscePG9r///S9ssQTCc889Z5Js3Lhx4Q4FAbR//357/vnnc10Llkzp6elnfQCbkpJiTzzxhEVGRlqlSpVs4cKFAYoue1JTU+2RRx7xjWYUERERlFGTQiHcv+fBkpiY6OtXIzExMU+3ogr0yVtKSorVrFnT6tSpE9CW5Tt37rT69etbpUqV/tK6Nzk52ebPn+8rUqWmplqJEiXsvPPOs7vuusumTp16yvXcvHmzXX/99SHtM+3P0tPTrWXLlibJChcubJ07d7YJEyacUf+jwNkI9m1YmQM6VK5c2df9SW6RlpZmW7dutYSEBDMzW7ZsmbVr186qVatmERERJsnKlSsX5igDi4JRDrFz586gDlWdVQ899JCVLVvWfvrpp6Ava+zYsSbJ3nzzzaAv62TS09NtyJAhvlvzzmYUrbzG4/FYixYtrEyZMr574nMSj8djM2bM8B3Qbd26NUf8/aSnp9vkyZPt/PPPN0nWu3fvcIeULYcOHbJy5cpZjx498tQVEuR+bdq0sVatWmV7u1yzZo01btzYN+pnTtu/bd68Odf3A7Rv3z578MEH88wtuqtWrbJatWrZDTfcYB6Px7p06WKNGzcO+oiRobRixQpffx3BMG3aNJNkY8aMCcj8Mi9uFitWLEv9CyUlJdmkSZOse/fuds455/gKs5m3PKelpVl6erodPXrUGjZsaCVKlAhrf24//fST3XPPPTZjxox82z0CcoZ9+/bZI488EtAWuGvXrrXy5ctbhQoV8txtXUlJSbZ69epcf9H4zygYwc/HH38cso6ePR6PtW3b1ooUKRLyH+bExETr3LmzSbLbbrstKEOl5nbLli2zrl275qjbC9LT0+2///2vxcbG5uhReY4ePWpDhw71tc5JS0vzXYnIyXbs2OH7+9++fXuOO5kGXnvtNZNkc+bMydb3H3/8cStdunSubcGTG8yePdsk+fXvllt99NFHFhMTY+XLl/e1up4+fbqVKlXKYmJi8sQt7EeOHLELL7zQLrjggqBdePF4PHbFFVdY+fLlz3oAhYULF1qpUqXs3HPPzdbFzdTUVFu4cKE9+eSTtnTpUjPz3lJepkwZa9CggTnn7IsvvjirGIG8IrPY+/TTTwdkfps2bbKKFStauXLl7Ndffw3IPBF8FIwQVjt37rRzzjnHhg0bFtLldu/e3SIjI+3111/P9Qd7+cWUKVOsTp06vo4e33nnnVzTx9KECROsVKlSNnLkyBwX88GDB23ChAnWsmVLc85Zr169wh0ScEpJSUlWpUoVu/jii7N8+9OOHTt8/QImJyfbb7/9FswQYWa9e/e2iIgIW7RoUbhDyZaUlBQbMGCAr1/JP7dA3rFjhzVv3twk2U033ZSri+u9e/c251zQO77/8ccf/fr9yK6uXbtazZo1A9rH14oVK+y2226zihUr2gsvvBCw+QJ5wa233mqRkZG+AuvZ2Lx5szVp0iRLowEi56BghLDbsWNHyJaVeYKxZcuWoPbRlJesXbvWRo0aFZZln3hC2K1bN6tXr559+OGHuaKT3hP98ssvvhHcatWqZXFxcTmiUNm3b19f5301a9a0IUOG5Lnmwch7Jk+ebJJ8fe+disfjsQ8++MDOOeccq1OnTp7tXycnSkxMtEqVKtmFF16YK2+p+e2336x8+fJ23333nbLIn5aWZkOHDrWKFSuGtb+bs/HJJ5+YJHv44YdDsryzOUnMvMXx8OHD9OUDhFBCQoJVrFjRateune07Mg4cOOD7Dc4Jx784MxSMkGOsXr06aM0T09PT7amnnrIbbriBk4YzNGjQIHPOhaRfq0zHjx+30aNHW9WqVW316tVm5v3Bys3/dx6Px+Li4qxWrVomye6+++6QL/+HH36wwYMH+/L41FNP2b333muLFy/mBxy5Rnp6usXGxto111xzymni4+Ote/fuJskuu+wyCqFhMHfuXJPkG4V19+7d1rt3bxsyZIhNmjTJ5s6da+vWrctRfR0tX77cd0Fi3759WfpO5oAZaWlpNnHixFxzQeP333+3kiVL2iWXXBLylq9n0rG2x+OxZ5991po0aWKHDx8OYlQATuXrr7/OdnF53759Vq9ePevXr18QIkMoUDBCjpCSkmIXXHCBNWrUKOAHLgcPHrTrrrvOJNntt9+ep0c3CYYDBw5YqVKlrHXr1kEvKhw9etRGjBhhFSpUMEnWrFkzW758eVCXGWopKSk2cuRIXwejhw8fDmo/UWvXrrXHH3/cqlat6htxheF4kdtt3br1lL8VW7dutQoVKlhUVJQNGzYsqCO94PSmT59uy5YtMzNvMaZcuXImye+R2VJsxYoV1rlzZ+vfv78NHz7cPvzwQ/v+++9DUiTweDz20ksvWWRkpL366qvZmkdma53mzZuHtOV0Jo/HYwkJCbZhwwZfq67Vq1fbCy+8YAMHDrQ77rjDOnToYE2bNrVNmzaZx+OxMWPGhLzz7hkzZlihQoWy1NooLS3N+vbt6zt+y2m3dAP5ydtvv33GrSkPHDhgDRs2tEKFCtm8efOCFBmCjYIRcoxPP/00oB2rmZn9+uuvVqtWLYuKirJRo0bRiiKbRowYYZJs1qxZQVtGSkqKVa5c2SRZixYt7JtvvskX/19PPPGExcTE2LPPPhuwWzcy8zZv3jzfaDBt2rSxd99996w7HAVykiNHjvhaeGRu9+np6davXz9bsWJFOEPDKRw/ftw2btxo8+bNs3fffde2bdtmZt79Vb169ax48eJ+BaUFCxaYmbez1J9++ingvwuJiYl2ww03mCTr2rWrJSYmZms+Ho/H3nnnHYuJibGSJUvatGnTAhqnmTd3X331la8frgULFlj9+vXt3HPPtaioKF/OMk/MPvroI9+FgkqVKlmjRo2sbdu2tm7duoDHllXx8fFWsmRJa9u27WmnO378uHXt2tUk2UMPPZQvjgeA3CAtLS1Lx6uHDh2ySy+91KKjo4N6/oDgo2CEHOXWW2+1qKgo3xXJrEpJSbGNGzfa119/bZMnTzYz70gY1atXt3LlyuW54Q1DLTk52apXr27169cPaHP7hIQEGzdunO9AcPz48b6Tg/xiw4YNvoPiIkWKWNmyZe3666/3fd6uXTurW7euNWjQwBo1amRNmza1gQMH+j6/+eabrUOHDtapUyfr2rWrtWrVyncLSHJysr322mt/6bAVyAsSEhLsvPPOs6eeesp+/PFHa9q0qW3fvj3cYSEADh48aCtXrrQvv/zS16H0vffea5Ksfv369uKLL9rOnTvPejmrV6+2WrVqWWRkpL300ksBKUqsX7/emjRp4nc73tnYuHGjjRo1yq699lorUqSISbI33njDzLx9Al1//fXWu3dve+SRR+zVV1+19957z9dq9fjx476Cak7yyiuv/O1oh3fddZdJshEjRoQwMgCnk5aWZi1atLA77rjjtNN5PB675pprLDIy0qZPnx6a4BA0WS0YOe+0OU+TJk1s2bJl4Q4DAZKQkKD69eurZMmSWrZsmQoVKiTJW7Dcs2ePtmzZoi1btuimm25SZGSkRowYoddff107duyQx+ORJEVERCgpKUnR0dFavHixKlSooAsuuCCcq5UnTJ8+Xd9//72effZZFSlSJFvzSElJ0caNG7Vx40YtXLhQb731lg4dOqSff/5ZsbGxAY44d/nuu+80bdo0paSkqHr16ho4cKAk6b777tOuXbuUlpbme1xyySV65plnJEnXXnut9u7dq7S0NKWmpioqKkp33XWXBgwYEM7VAUKie/fumjFjhtLS0lShQgVNmzZNTZo0CXdYCIL4+Hh9/PHHev/997Vo0SI559S1a1d98skn2Z7njz/+qO7du+v9999X8+bNAxZrSkqKnnzySXXt2lVNmzY9o+8eO3ZM+/btU+XKlRUfH6+yZcvKzFSjRg21a9dO7dq1U4sWLRQTExOweEMtOTlZderUUbFixbRixQpFRkb+ZZotW7Zo+fLl6tatWxgiBHAqTz31lJ555hlNmzZNXbp0OeV0c+fOVXx8vHr06BHC6BAMzrnlZva3B1cUjBAys2fP1jfffKNnn31Wn3/+uYYMGaItW7YoKSnJN83WrVtVuXJlTZkyRV9++aWqVq2qqlWrqlq1aqpataoqVaok51wY1yL/OnLkiDZt2uQrDG3cuFHdu3dXmzZttHjxYjVr1kyS5JzTjTfeqEcffTTfF4sAZM+GDRvUtGlTderUSSNHjlSJEiXCHRJCYOPGjZo8ebLMTEOGDJGZadCgQWrTpo2uvvpqRUVFnfK7qampmjVrljp16iTJW7woWLBgUOMdNGiQKlWqpP79+//l2MTMtHbtWs2ePVuzZs3Sd999pxYtWmj27NmSpA8//FCXXHKJatSoEdQYQ23q1Km65ZZbtGDBAl122WWSpLVr1+rtt9/W8OHDFREREeYIAZxMamqqmjVrpu3bt2vVqlUqX76877OUlBT973//U5s2bcIYIQKNghFytDlz5mjs2LF+xaCqVauqZs2apz0gRPDMnTtXGzZsUJMmTXyFoYYNG6pjx4767bffVKFCBb/py5Urp6FDh6pPnz46fPiw4uLiVKNGDdWsWVMlS5YM01oAyCvS09NP2kIB+ceOHTsUGxurhIQEnXvuubr55pt12223KTY21q9As3v3bnXv3l0//PBDyFq2pqWlqUuXLvriiy/UsWNHTZw4UcWKFfO1oO7WrZs+/fRTSVKdOnXUrl07XXfddWrZsmXQYwsnM9PmzZtVvXp1SdKiRYvUsWNHRUdHa8mSJapUqVKYIwRwKmvWrFGjRo10zTXX6PPPP5dzTmlpaerZs6c+/fRTrVq1SnXr1g13mAgQCkYAzsgNN9ygadOm+b133333acSIETIzDR8+XNWrV/c9ihcvHqZIAQD5RXJysmbOnKn3339fM2fOVGpqquLi4tSxY0eZmb777jv16NFDR44c0dtvv62bbropZLGZmUaNGqVBgwapcOHCSktL0549e1S0aFF98sknio+PV9u2bVWlSpWQxZSTjB8/XgMGDFDFihU1Z84cVatWLdwhAfgbI0aM0JtvvqkffvhBZcuW1R133KHJkyfr1Vdf1f333x/u8BBAFIwAnJE9e/bo448/VqVKlVSjRg1Vq1Yt230aAQAQaPHx8frvf/+rO+64Q4ULF9bQoUP1xBNPqFatWvr0009Vr169sMT1yy+/aOjQoapevboefPBBlSlTJixx5CTDhw/X4MGD1bhxY3355ZcqV65cuEMCkAUej0fHjx9XkSJF9K9//Uvjx4/X0KFD9dhjj4U7NAQYBSMAAADkWWPHjtXGjRv1xBNP0Oo1h9m9e7cmTZqk//znPypWrFi4wwFwhjZv3qxmzZqpT58+GjZsWLjDQRBQMAIAAAAAAGdk4cKFWrFihfr168eAQ3lUVgtG9C4MAAAAAAAkSZdffrkuv/zycIeBHICxLQEAAAAAAOCHghEAAAAAAAD8UDACAAAAAACAHwpGAAAAAAAA8EPBCAAAAAAAAH4oGAEAAAAAAMAPBSMAAAAAAAD4oWAEAAAAAAAAPyEtGDnnJjjnFjnnHg/lcgEAAAAAAJB1ISsYOee6Soo0s8skVXPO1QzVsgEAAAAAAJB1oWxh1ELSxxnPv5J0ZQiXDQAAAAAAgCyKCuGyYiTtynh+QFKjP0/gnLtb0t0ZL48459aFKLZgKiNpf7iDyIPIa3CQ1+Agr8FBXoODvAYHeQ0O8hoc5DU4yGtwkNfgIK95W+WsTBTKgtERSYUznhfVSVo3mdk4SeNCGFPQOeeWmVmTcMeR15DX4CCvwUFeg4O8Bgd5DQ7yGhzkNTjIa3CQ1+Agr8FBXiGF9pa05frjNrRYSVtDuGwAAAAAAABkUShbGH0maYFzroKk9pKahXDZAAAAAAAAyKKQtTAys0Pydnz9o6SWZpYYqmWHWZ66xS4HIa/BQV6Dg7wGB3kNDvIaHOQ1OMhrcJDX4CCvwUFeg4O8Qs7Mwh0DAAAAAAAAcpBQ9mEEAAAAAACAXICCEQAAAAAAAPxQMAoC59yGbHwn0jn374znDzvnygc+stwtO3nN+N6/nXMRzrk7nXOxgY4rN8puLk8ynxLOudsznr/gnCsYiPnmVgHMK/uDE5DX4AhUXjPmxX42w+ny6pyr5pxrmZV9Jdurv0DlNWN6ttcM7F+Dg/1rcJDX4AhwXu90zhV1zrVzzrUN1HwRPhSMssA5V945t+CE13Wcc5+f/itubsbjG+fcyIw3z3HOfeec+8E51/5P37lJUp2M56skvRDQlciBApjXK51zG51z851z3/zpC5dLam9mHkkrJL3snHPBWJ9wClQuMz5o7pwbf8Lrqs65pRnbbqM/zae/pLIZz3dKejgAq5NjBDmvtzrnVmVstx/8aT55en8QwL/9izP2p985557KeC/f7meDnNd8u58NYF6bS3pL0jWSvsx4j+31j9eBzCvb6x+vs/27lfHhNc65SRnP2V7/eB3IvLK9/vE6YOcCzrlo51xcxvb6zz/NhLz+5StZzmtF59zOjPfmO+fKnjCTypLulXRU0k+ShjrnCgVlJRE6ZsbjNA9JJSXNlrQi43V1SV9Imn+a76w6xfsjJd0pKVLSt/qj0/ES8v64ljth2umSHgz3+ueSvD4g707/z+9HS1oiqd4J743I+H9w4c5BDs1lM0nzJL1zwnsz5B3hsKikWSe8X0XS/0kqmPE6StIiST3CnZNckteRkuqcZNo8vT8IcF7HZuZJ0uqM3OXL/WwI8pov97MBzus9kkpkPF8mqSDba9DyyvZ6lnnN+KyQpJXK+O1iew1aXtlezzKvJ8thxntPZzz/UlIx8hqQvHaV1PcU08+Q1PaE1wMkfSopOtx54ZH9By2M/l66pB6SDmW8Pizphj9P5Jy7zTm3xTk3X9L+E6quv50w2T8kfWJm6ZLWSarinIuQNEnSa2a294Rpb5PUwTk32TlXJvCrFXaBzGszSU84535yzvU/4f2XJc0xs9UnvDdIUhlJs5xzVQK2NuEVyFzukNT7T1+ta2bzzeyIJE/GFZvCkibLezCYLElmlibpekkPO+dec87FBHIlwyDYeb1U0lvOuRXOuRsy5pUf9gcBy6uZ/cvM9jrnouUtWB5T/t3PBjuv+XU/G8i8jpGU4py7WdKWjH0n26tXoPPK9up1Nr9bkvSopCknvGZ79Qp0XtlevQJ9LtBC0scZz7+T1CTjOXnVWeW1maTeGcevz50wv/slHZT0VeZ7Zva6pE2SfnDONQjcKiKUosIdQE5nZockyWW0Usz8MXR/bbWYLGmCmQ098U3n3OITXqZlnHRL0gFJ5SU1lrRGUjfnbfqfJCle3urwLHn/2NMDt0Y5Q4DzOknS1/Juz8udcx9KqiHvFa8SzrmNkgpI2i2piKT1kr5RHrklM5C5NLNdJ/mhPHjC80RJpSXdIukjScOcc5Ml7ZV0RNK5ksZIKiYpNftrFX4hyOswM5vhnCspaalzbrq8V23y9P4gwH/7mR6QNMXMUp1z+XI/G4K85sv9bBDyWl5SN3lbbkn59LggBHlle9XZ5dU5d6GkBpLuk/R0xttsrwpKXtleFZRzgRhJuzI+PyCpvHPuUpHXTNnN6yxJz8p7MWluRiEoUVJqy2ZFAAAGS0lEQVQreXO4KqNIvEXe1oiS9Ia8/x/IhSgYBU4BSb2cc63/9H6lE56f+INZVFKEmX0i6RNJcs6NkzTZzL5zzt0hqbiZjQpm0LlAVvI6L6N1S5pzbp2kKma2WNJiSXLOPSppp5m957x9HXQys5dCEXwOk5VcnoznhOeZ2+0rGa/fcM59Jam3mW3POFhcbWZxgQk5V8huXudIkpklOOcOSSrJ/sBPlvKacfDXQVLmdOxnTy+7eWU/e3pZyquZbZXU1Tm3wDl3rthe/05288r2enpZyetL8t5OciK219PLbl7ZXk8vW+cC8l7ILCxvMaOopCPk1U9287ow8+4C59xPkmqa2aeSrst4b7mkGmb2jPP2afSqmb0b5HVBEFEwCpySkmpLqmZmvzrnLjOzRc47ckdlM9smabVzromZLZMUK+nFzC877y0+zfTHj0gFSb+GeB1yotPmVdJ2Sd8751rKW7m+WNLGzC87bzn9Okk3ZrxVQd7bg/KjrGyjJ3Mw4wD8d3nvg96X+YFz7jxJpcxse8ZbFSSdrlO9vOiM8+qcKyFpZsZ2W0Peg+r4Ez5nf5CFvGa02hot70FeZos29rOnd8Z5zdiPsp89vazk9XNJAyVtlrcPk6Nie/072c0r2+vp/d2xVaqkCyW9I29Oqzjv7Shsr6eXnbzeK+l2ttfTyu65wHJJV8pb0IyV9GPmDMmrpOzndY5zrqe8hbhr5O338ETd9Me+IT/mNc/J1U3ucgrnbYrXWd4rLx85b2/wdzrnrpW3ue64jEnfkjQh4wrMYTPblfH9ApImShpjZsczpr1Q+fwPLCt5NTOT9Iq8PfHPljTIzBIzvu/kvZKzwMx2Zsw2X+b1DLbRk3lT3s4rP5T0beaJuXOuuKT3JQ05Ydp8ld/s5jVjG50mbzP+dyX1OmGe+X5/cAZ5fVFSKUkfOO9997XEfvaUsptXefPEfvYUziCvQ+Xtt2SBvNvhYbG9ntJZ5pXt9RSyeGy128zqmFkLeUc/m21mb4jt9ZTOIq+jxPZ6Smd5LvCupCHOudcl1dUfLYvI69nldYi8nd7/KO/f/LoT5vsfeW9dzbytLV/lNc+yHNDzdm5/yDtixJUZz/vI25SvqqQ7M957VlLZjOc15K28Zo4sVU7SL5LuPWF+M+TtUT4q3OuWW/J6ku8WlvS9pGH6YxSPsfJ2xFYy3OuWm3KZ8XmspE7yNj+XvEPnrpZ0Y8brApIWyvvDEfb1zS15Pcn82B8EIK/sZ4OT15PMj/1sAPLK9hqcvJ5kfmyvAcgr22tw8nqS+bG9BiCv8rZw6a4/RlIkrwHI60nm5+S9uPy2pAIZ7z2Vketq4V5fHmf3yPxDQRg552LM7Gi448hryGtwkd/gIK/BQV6Dg7wGB3kNDvIaHOQ1OMhrcJDX4CCveRcFIwAAAAAAAPihDyMAAAAAAAD4oWAEAABwlpxzpTNGjpFzLjqjY1UAAIBci1vSAAAAssE5N0BSspmNcc4VlLRe3qGaH5F3pBlPxqSNJVWxjNGPAAAAcoOocAcAAACQUznnmss7bPsGSbXN7NwTPk6TlOqci5RUStIDkvaYWc8/zWO+pJTQRAwAABAYFIwAAABOLU3SdDPr75xb6pz7p6T6Ge/HytuKKE3S3WZ2hXNuTkYBKVO7jH9p0g0AAHIVCkYAAACnli6pi3OuvqRyZjbROXeBme1wzt0jKUnSVEl3ZUwfZWZXS96WRWaWRndGAAAgN6LTawAAgFNLl7eFUQtJvznnCkuKc86VOMX0tZ1zc51zc+VtgQTg/9u7Y5yGgSAKoH8CggY6OmpqKDgCV+AG1FwBcQgqam5DjzgHBYKCoUhCcBQrQgpIEe9VK3tsbbn63h0DsJXsMAIAGPf941p192tV3SU5H6l/6u6L5Kt3EQDAVhIYAQCM283iSNpxknT3fZJU1cmK+rPZ7qIkOa0qay0AYCtZxAAAjNvJoun1zdK9eXOiyXzc3UfLL6iqvUybYwMAbA2BEQDAuMckz0nS3bfzi1V1meQ6yVWSgyT7qx6uqodMG2G///5UAQA2p7r95RUA4Cdmza8/uvttTd1hd7/80bQAADZGYAQAAADAwGR9CQAAAAD/icAIAAAAgAGBEQAAAAADAiMAAAAABgRGAAAAAAx8AgDVYAXaW4qyAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1440x576 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# 生成 fig\n", "plt.figure(figsize=(20,8))\n", "# 准备数据\n", "x = range(60)\n", "# 准备上海的数据\n", "y_上海 = [random.uniform(15, 18) for i in x]\n", "# 准备北京的数据\n", "y_北京 = [random.uniform(1, 4) for i in x]\n", "\n", "# 构建中文坐标标签\n", "x_ch = ['11点{}分'.format(i) for i in x]\n", "y_tickets = range(40)\n", "\n", "# 画折线图\n", "plt.plot(x, y_上海, label='上海', color='blue') # 颜色名称: https://matplotlib.org/stable/gallery/color/named_colors.html\n", "plt.plot(x, y_北京, label='北京', color='#000000', linestyle='--')\n", "\n", "# plot 后再修改刻度\n", "# 修改x y刻度\n", "plt.xticks(x[::5], x_ch[::5])\n", "plt.yticks(y_tickets[::5])\n", "\n", "# 增加 x y 轴 描述\n", "plt.xlabel('时间')\n", "plt.ylabel('温度')\n", "\n", "plt.title('图表的标题')\n", "\n", "# 添加图例\n", "plt.legend(loc='best')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 多个子图" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIwAAAHtCAYAAAB7xuX3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XeYldW59/HvmsbAACMdlF4EVEQEuyJYY4ndGFs0RxONMcmJacbom+SYYjye5MQkmmOLvbcYS6yAqCBSRZrSexuYoQ7T1vvH3uBsYJgZmM0M8P1cF5czez/7edaeMOTev2ete4UYI5IkSZIkSdJmGfU9AEmSJEmSJDUsBkaSJEmSJElKYWAkSZIkSZKkFAZGkiRJkiRJSmFgJEmSJEmSpBQGRpLqXQghbOexrPoYiyRJ0r5k6zrMGkzSZgZGkrYICdn1cOmvhxDu2+qxz0MIHbZ3cAhhRAih985cKISQWfk9Jt9zo505lyRJUl2orxosWWtNCyFU/lz4ZAjhnCqO/3UI4bqdvNY2NVcIIWd7Nw4lNQymx5Iq6wC8EkLYBMStnusP5AGdY4wLQwjjSfwbUrKD83WKMbYDCCFcD/wKWAhcHGOcU+m4fsBHm78JIRwCzIsxLqnivMWbrxtCWAYsAyqSzzUF/h1jvDH5/AZgfPK5gcAlwG0hhBbJ8S8GVgLbLYwkSZJ2g7TVYAAhhMuBU2KM39zquH7A6BhjRfK4DOBw4D+qOG/lGuyfQK9K42gEbIgxDkw+/y6Qn3xNL+CHwI+SAVE3YFryfZwLVFXzSapHBkaStogxLgYGVX4shNAJ+BOwCPivGOPC5FOlwAUxxrkhhGOB24AzY4wx+bosYG7y637J5w8HugB/Bc5KPjeORNGwIoTwn8ANwFeAXiGEmUAASmOMfUIIrYBmJAqS/UMImyoXQ1UoBJ5Pft0zxvgKiYLs58DiGOMjtf05SZIk1aV01WDJ788G/ga8vNX5/w84A8gMIUwEHgI+A1oAE5MTfzoCXYEiEqFWc2BTCKF7jPHcat7WJuDfJG7MXQbMjTEODCEcA3x7O+GVpAbGJWmSqhRCuBR4A/hrjPGSGOOUSk+XJo/JB+4H2gCfhBDWhRC+mzymLPnf84BHY4yLY4yjgNYhhLzkcx1ijC1jjL1JFClNgAuBg2OMPYFDSRQcAF8lUfAMBv4f8K0avI0yYGzyT0kIoVFyVlJf4KQQwtgQwhW1+blIkiSlUx3WYADfBG7fzmU6AefEGA8gcTOvFXAVcGmMsWeyDptMog7rDdwLXANcDtxZg7eRkXz9WBKhUQghfADcSCKkei2EcH8NziOpnjjDSNKO9AQejzEOr+L5TOBfwCpgJDAauJZEQVE5kO4IVD7HYhIzjaby5VKyza4APokxFiW/zyYZGMUYHw4hjARmAj8BjgghbC5kGpMooMpJLEs7P8Y4NTm2O5LnWk2igFpAInA6DfgC2FDtT0KSJGn3qasaDOAiEkHQ1rauwXqSmOVUeeZPNrApxjgROD2EMJ9ESPVxCGE6sC55TCaJpWeNgf+JMT5Eog3BD5LXaUJi6VoFcB1wC3Af8LUqfwKS6p2BkSQAQghnAr8F1ld6uGPyubMrPZaXPA4S4cz3SNw1+gD4T+CsGGPFVs0TM4E1lb5fD+xXxVBeBVaFEP4nxvgjIIcvZxgBnJ/874vAJTHGfskxPgA8H2P8d6X3NBh4lC8Loky+nO6dD5wCfMq2vQIkSZJ2izTXYMQYYw37Ss8G7gb+EUK4LsZYTKU6LIQwiMSspJ8Af4sx9kk+fgVwSIzx5krvqSswncTscUi0GOjClzXZhcDrWINJDZqBkSQAYoyvk/g/7i1CCDcnn7tj6+OT/YY6kWhkDfAk8CFwXXLHsxsrHb6a1ICoMV8WDM2S6+YBOgMPAKOAB5Mh0HoSd6xI7qzxbRIhz/3A9SGEj4HPk6/PDCHcDdwSY1yXvO4MoCWJ5Wu/B9Ymj+0EzEt+7S5pkiSpXqS5BqvOMyGEjSRqpYdijB+HEH5IYkbS/wFZMcby5LE/AcYAzwFXhRA+AQ4iGXQlxzUixjgB2EiiPttEIoT6PonZSJkk+lFunkluDSY1YPYwkrQrFgDfIDFTZwbwO+B9ErN4hlc6bixwDCQWr5Nofr0o+dzaGONhMcbDSBZLMcZNwD0klqc14cvZSXcC/ySxk8brwHeAH5NobA2Ju20tgd8kv58P/IzEVO1DSEx/LgPGAVcDE4F3kt9LkiTtKWpag1XnkmQN9l+VHvuf5Lkh2QsphHA+iebXL5OY1XQEcCWJGUibrQMeCCFkxhiXAT8iETBlkAi3WpHoaXQFid1xC4EnajFWSbuZgZGknRUAYoyLgJ+SuJv1Aok7S0UkwpvN85/fAM4PIVxAYiePghjjgmrO/5fksfl8GRg9A9ya/LqCRA+i+THGTyu97sfAtcmd2bqS2IGtG/AeMBSYQyKs6kBi6vVfSYRMkiRJe4La1GC1FmP8hESNVdlYEs2uNy8hyyexw9pDlY55kMTny28nvz+ERLBUBBxH4mbfv0nsiPswiX5LvXd2nJLSz8BI0nYll3+1J3WXjcqyN38RY/wDcDaJO0uV/48/K/n8GhINF28CTiRRcGzWMoQwMbks7cxK5y0FckkULDOT5/koOfsoI/mnN/C7EEIXYH+gLMa4lMTWrQuAgSTusv2WxHK3Q0msn+9HYleQUcClJJayNanFj0eSJCkt6rIGq0Y2iSVpE0lsBpKdvH4AykIIQ0nOCI8xLogxzuTLGqwfiZlIeUAPEjVYJBEGvRtC6A7MIjFTqQcwJHns5cAFySbaXwGWhBBa12CskupBSPxeS9KXQgiZJGbilAIXJdeib33MeBKBTskOTtUhxtiummvdGGP8a/LrY4G5McbFIYQBJJaTfQDcnwyKNr9mBHBdjHF68vt3SKyf/0al3dUIITwO/JnEkrNzSBQmh5IoiHKAFiTukOUAPZN36iRJkurFbq7BvgYMizGuCCH0AJrHGCckb6I9QqJh9X0xxiWVXvNrYEmM8e/J739LYgb3jTHG8ZWOuxZoEWP87xDCUcB5JNoTNCZRh+1HogZrAnwzxvj0Dn8wkupF2gKjEEJLEnf3J8QYV6blIpLSJoSQEWPcervVys+3AgorNUJscEIIuSS2gjUZl7TPsAaT9mx7Qw0GEEJoHGPcWN/jkLTz0rIkLYTQgsTW2EcCw0IIbUII80MIw5N/+qXjupLqzo4KleTzBQ29UIkxFhsWSdqXWINJe769oQYDMCyS9nxpmWEUQjiRxF390SGEu4AVQMsY48/q/GKSJEkCrMEkSVLdScsMoxjjiGShMpjEHa6NwNkhhDEhhAdDCDVpwiZJkqRasAaTJEl1JW1FQ7K7/iXAamACcEqMcUkI4VESOyG9sp3XfJvkNox5eXkD+/Tpk67hSZKkejZu3LiVMcY29T2OvU1tazDrL0mS9i01rcHSvktaCOF24LMY4zPJ778PZMcY/2dHrxs0aFAcO3ZsWscmSZLqTwhhXIxxUH2PY2+1MzWY9ZckSXu/mtZg6Wp6/bMQwjeS3+4H/D2E0D+5TeR5wKR0XFeSJGlfZg0mSZLqSloCI+A+4MoQwvtAJjAYeAyYCIyKMb6TputKkiTty6zBJElSnUhLD6MY42rg1K0ePjQd15IkSVKCNZgkSaor7pQhSVIDUFpaysKFCykuLq7vodS53NxcOnbsSHZ2dn0PRZIkKYU1WNUMjCRJagAWLlxIs2bN6Nq1K4lNrvYOMUYKCgpYuHAh3bp1q+/hSJIkpbAGq1q6ehhJkqRaKC4uplWrVntVoQIQQqBVq1Z75V07SZK057MGq5qBkSRJDcTeVqhstre+L0mStHfYW2uVXX1fBkaSJKnGYoxbvp49ezYFBQX1OBpJkqR9z1NPPUVRUVHar2MPI0mStI0hQ4bw1ltvkZOTs+WxkpISTjvtNH7wgx9w/vnnc/PNN3PkkUdy2GGHAVBeXs6RRx5JixYt6mvYkiRJe6yrrrqK2267jZEjR1JeXs61114LwLJly5g6deqW5tUfffQRI0eO5LLLLgMSjbt79+7N/vvvX6fjMTCSJEnbWL16dUpYBJCTk8NLL73EXXfdxUEHHcSGDRto3749S5cuBRKB0qZNm+pjuJIkSXu87OxssrKyyM7OTllOVlhYyIQJE7bUZr179wZg4sSJQKIGa9OmjYGRJElKv8pFSoyR8vJyJk+eTF5eHrfffjtf+cpXqKio4OGHH95y3BVXXEH79u3rYbSSJEl7rvLycjIzM7d5fPXq1VxzzTXcdddd3HTTTVx99dXMnTs35ZjGjRvzxhtvpGVcBkaSJDUwv/7XFKYuXlOn5zxo/+b88qsH1+o1Rx99NAAVFRUMGjSIG264YUux8ve//51f//rX3H777bz44oucddZZPPvss3U6ZkmSpN1uyJBtH/va1+CGG2DDBjjzzG2fv/rqxJ+VK+Gii1KfGz58h5crKirivPPOIzMzk2nTpnHrrbcC8Morr/Dkk0/y/e9/n+7duwMwffp0Ro8enfL6o446qmbvaycYGEmSpO3auiABePXVVyksLOS73/0uw4YNY9GiRaxdu5ZnnnmGFStWcNhhh3HWWWfVw2glSZL2PPn5+QwbNgxgS88igL59+/Kb3/wmZdZ3eXn5Nq9P5w5vBkaSJDUwtZ0JtDuNHTuWp59+moceeojrr7+ea665hoyMxKarkydP5itf+Uo9j1CSJGkX7GhGUJMmO36+detqZxTVVK9evbYJgw4++GCGDBnC6tWrKSwspFu3bmndbMTASJIk1di9997Ld77zHTZs2EDTpk3p168fDz74IP3796dx48bbXX8vSZKkHVu6dCmLFi3a5vGysjKyshLRzYABAxg6dCgHHHAAw4cPp1+/fpSUlKRtTAZGkiSJsrIyQghVBj7l5eXMmTOHOXPmMGjQIJYuXcq0adO48MILAbj//vvJycnh3HPPJT8/f3cOXZIkaY/19ttvc9ttt9GnTx9Wr14NQGZmJvPnzwfggQceoKCggIyMDMaMGcPTTz/NyJEjATj77LO54oorGDduHH/84x+3zPquKwZGkiSJhx9+mPvuu29LoZGbm7ul6TUkGl+fddZZ3HzzzQC0b9+ed955B4DPP/+cSy+9lJdfftmwSJIkqRYGDx7MiBEjaNSoEVdccQUlJSUMHjyYJ598kiFDhpCXl8e9997L3XffzXPPPcfo0aP505/+xBlnnEFeXh4vvPACd911F5s2baJx48Z1OrYQY6zTE9aVQYMGxbFjx9b3MCRJ2i2mTZtG375963sYOyXGSElJCY0aNarymO29vxDCuBjjoHSPTzVn/SVJ2tfsaTVYQUEB8+bNY8CAATVqeL0rNZgzjCRJ0i4JIewwLJIkSVLdaNWqFa1atdot16rbBW6SJGmnNdRZv7tqb31fkiRp77C31iq7+r4MjCRJagByc3MpKCjY6wqWGCMFBQXk5ubW91AkSZK2YQ1WNZekSZLUAHTs2JGFCxeyYsWK+h5KncvNzaVjx471PQxJkqRtWINVzcBIkqQGIDs7m27dutX3MCRJkvYp1mBVc0maJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJClF2gKjEELLEMKpIYTW6bqGJEmSUlmDSZKkupCWwCiE0AJ4FTgSGBZCaBNCeDCEMCqEcGs6rilJkrSvswaTJEl1JStN5z0UuCnGODpZuJwEZMYYjwkhPBRC6BVj/CJN15YkSdpXWYNJkqQ6kZbAKMY4AiCEMJjEHa6WwLPJp98Cjge2KVZCCN8Gvg3QuXPndAxNkiRpr7UzNZj1lyRJ2p509jAKwCXAaiACi5JPrQLabe81Mcb7YoyDYoyD2rRpk66hSZIk7bVqW4NZf0mSpO1JW2AUE74LfAocCzROPtU0ndeVJEnal1mDSZKkupCuptc/CyF8I/ntfsAdJKZAA/QH5qbjupIkSfsyazBJklRX0tX0+j7g2RDCtcBnwMvA+yGE/YEzgKPTdF1JkqR9mTWYJEmqE+lqer0aOLXyYyGEIcnH7owxFqXjupIkSfsyazBJklRX0jXDaBvJAubZag+UJElSnbEGkyRJO8PGh5IkSZIkSUphYCRJkiRJkqQUBkaSJEmSJElKYWAkSZIkSZKkFAZGkiRJkiRJSmFgJEmSJEmSpBQGRpIkSZIkSUphYCRJkiRJkqQUBkaSJEmSJElKYWAkSZIkSZKkFAZGkiRJkiRJSmFgJEmSJEmSpBQGRpIkSZIkSUphYCRJkiRJkqQUBkaSJEmSJElKYWAkSZIkSZKkFAZGkiRJkiRJSmFgJEmSJEmSpBQGRpIkSZIkSUphYCRJkiRJkqQUBkaSJEmSJElKYWAkSZIkSZKkFAZGkiRJkiRJSmFgJEmSJEmSpBQGRpIkSZIkSUphYCRJkiRJkqQUBkaSJEmSJElKYWAkSZIkSZKkFAZGkiRJkiRJSmFgJEmSJEmSpBQGRpIkSZIkSUphYCRJkiRJkqQUBkaSJEmSJElKYWAkSZIkSZKkFAZGkiRJkiRJSmFgJEmSJEmSpBQGRpIkSZIkSUphYCRJkiRJkqQUBkaSJEmSJElKYWAkSZIkSZKkFAZGkiRJkiRJSmFgJEmSJEmSpBQGRpIkSZIkSUphYCRJkiRJkqQUBkaSJEmSJElKYWAkSZIkSZKkFAZGkiRJkiRJSmFgJEmSJEmSpBQGRpIkSZIkSUphYCRJkiRJkqQUBkaSJEmSJElKYWAkSZIkSZKkFFnpOGkIIR94GsgE1gOXADOB2clDvhdjnJyOa0uSJO2rrMEkSVJdSdcMo8uBP8YYTwOWAjcDT8UYhyT/WKhIkiTVPWswSZJUJ9ISGMUY74kxvp38tg1QBpwdQhgTQngwhJCWmU2SJEn7MmswSZJUV9LawyiEcAzQAngbOCXGeCSQDZxZxfHfDiGMDSGMXbFiRTqHJkmStNeqTQ1m/SVJkrYnbYFRCKEl8BfgP4BPY4xLkk+NBXpt7zUxxvtijINijIPatGmTrqFJkiTttWpbg1l/SZKk7UlLYBRCyAGeA34eY5wHPBZC6B9CyATOAyal47qSJEn7MmswSZJUV9I1w+ga4HDgFyGE4cAU4DFgIjAqxvhOmq4rSZK0L7MGkyRJdSItjQ9jjPcC92718K/TcS1JkiQlWINJkqS6ktam15IkSZIkSdrzGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSGBhJkiRJkiQphYGRJEmSJEmSUhgYSZIkSZIkKYWBkSRJkiRJklIYGEmSJEmSJCmFgZEkSZIkSZJSpCUwCiHkhxDeCCG8FUJ4KYSQE0J4MIQwKoRwazquKUmStK+zBpMkSXUlXTOMLgf+GGM8DVgKfB3IjDEeA3QPIfRK03UlSZL2ZdZgkiSpTqQlMIox3hNjfDv5bRvgCuDZ5PdvAcdv73UhhG+HEMaGEMauWLEiHUOTJEnaa+1MDWb9JUmStietPYxCCMcALYAFwKLkw6uAdts7PsZ4X4xxUIxxUJs2bdI5NEmSpL1WbWow6y9JkrQ9aQuMQggtgb8A/wGsAxonn2qazutKkiTty6zBJElSXUhX0+sc4Dng5zHGecA4vpwC3R+Ym47rSpIk7cuswSRJUl1J112ma4DDgV+EEIYDAbgyhPBH4GvAa2m6riRJ0r7MGkySJNWJrHScNMZ4L3Bv5cdCCK8ApwJ3xhiL0nFdSZKkfZk1mCRJqitpCYy2J8a4mi936ZAkSdJuYA0mSZJ2ho0PJUmSJEmSlMLASJIkSZIkSSkMjCRJkiRJkpTCwEiSJEmSJEkpDIwkSZIkSZKUwsBIkiRJkiRJKQyMJEmSJEmSlMLASJIkSZIkSSkMjCRJkiRJkpTCwEiSJEmSJEkpDIwkSZIkSZKUwsBIkiRJkiRJKQyMJEmSJEmSlMLASJIkSZIkSSmyanJQCKEHcDzQjkTINBd4Lca4Nn1DkyRJkiRJUn2odoZRCOEW4BagGJgAzAD6AKNDCG3TOzxJkiRJkiTtbjWZYXRWjPG4rR57KYTQDBgMPF/3w5IkSdq3hRDeB5oAayo/DMQY40n1MypJkrSvqElgNC2E8BDwLLAIaAycAJwE/FcaxyZJkrQvuxh4GLgkxrimmmMlSZLqVLWBUYzx2hDC+cAZQB6wDhgHDLaHUcMxaUEht786lf+7ciCtmjaq7+FIaVFcWs6UxUVMmF/IQfs359geret7SNIuGzWrgJnL10IIZATISP43hEAAMjMC+zXJpmVeI1rl5dCqaQ5NcmrUglB7uBjjshDCpUBFfY9FkiTte2pUccYYXwJe2vrxEMLQGOOwOh+Vau2e4TMZO281//hwLj8+vXd9D0faZTFGFhVuZPz8QsbPW82EBYVMXVxEaXkEoFVeDh/87CQa52TW80ilnTdxQSGX3j+61q/Lzc6gVV4jWjXNoWurPO686FBys/1d2BvFGAu397g1mCRJSrcdBkYhhEzgOeAS4PkY47khhIwY4+Y7Xf9FYnma6tHiwo28PXUZOVkZPDpqLted2J1mudn1PSxpp70yaTG3vzqVFWs3AdA4O5NDO+ZzzfHdObzzfgB8+7FxPP3JfL55XLf6HKq002KM/Pa1qbTKy+Hl7x5Ho+wMYoQYoSJGKmIkRiiriBRuKKFgXQmr1pdQsL6EgnWbWLW+hIWFG3ll0mLOPrQDpx3cvtZjmL50DWXlkUMOyE/DO9SusAaTJEn1bYeBUYyxPISQC9wGHBhCuAkYGEJ4AXgDWLIbxlivSssr+HzZWj5bVMSnC4uIwC1n9qVpo4azHOCpMfOJwP9echg3PDGeJz+ez3Un9qjvYUk77fHR88jJzOD2cw9mQOcW9GnfjKzM1E0dj+zakvven83lR3UhJ6vaDR93m/Wbyigrj+Q3MbTVjr05ZSmfzF3Nb88/hE4tm1RzdN52Hy0pq2Dg7W/z7rTlOxUYff+pCZSWR4b9eEitX6v02qoG67Uv1mCSJKl+1ST1qABGAEOBHiR26zgI+BrwXvqGVj9mLl/H+HmrmbyoiE8XFTFtyRpKyhI385rlZrGhpJwFqzbw0NVHkJ1Z/x9SS8oqeGrMAk7q3ZYz+3Xg+J6teeCDOVx1bFeXJyTFmFjCFEKo55GoJopLy5k4v5Crju3Clcd0rfK4757Uk6seGsNLExZyyRGdd98Aq/Gfz0xk2ZpiXrnx+PoeihqwkrIKfv/GdHq1bcolgzrt9HlysjIY3LsN781YTkVFJCOj5v/OzV6xjs+XrQNgfsEGOreqLrRSPdinajBJktSwVJl4hBCyQwhvAhUxxneBlSR2SYvAoySKl7G7ZZS7yejZBZz2pxH89IVPeXnCIhpnZ3D1sV25+9IBDPvxECb9v9P4/fn9GPnFSm5+YfKWIKI+vTllKSvXbeKKY7oAcMOQHqxYu4kXxy+q55E1DMWl5Rz1u3c56+4PeG7sAopLy+t7SKrGuHmrKSmv4JgerXZ43OBerel3QD73Dp9FWXnD6Ae7triU4TOW8+nCIlatL6nv4agBe3TUXOYVbOCWs/puM3uutk7p25YVazcxeVFRrV731tRlW74e8cWKXRqD6ta+WINJkqSGp8oZRjHG0hDC94G7Qgj/AA4HmgGbgPuAa4Dz2YsKlqfGzKdZbjYv3nAs3VrlbfdO7deO6MTioo387ztfsP9+ufzotPptMP3Y6Hl0atmYE3u1AeCYHq3o3zGf/3t/Fl8b1LHGH0QqKhINhpetKWbpmmKWFhWzbE0xS5L/Xb52E91a53FO//057eD2DWpJ3o6Mml3A8rWbyAiBnzz/KXe8MZ3Lj+rMFUd3oW3z3PoenrZj1KwCMjMCR3RtucPjQgh8d2gPrn98PK9/tpRz+u+/m0ZYtWEzVmxpyv3J3FWcvhNLhLT3K9xQwl/em8kJvVoz5MA2u3y+IQe2JSPAu9OW0b/TfjV+3ZtTlnLIAc0p2ljKiBkruPLoLrs8FtWNfbEGkyRJDU91PYxmhBAi8GvgAOBbJAqVr8YYS0IIl++GMe4Wa4tLeXPKUi4a2JEebZru8NgfnNyLJYXF/OW9mbTPz+Xyo+qnyJ6xdC1j5qzi52f02RJuhRD4zpCeXP/4uBp/iC4pq+Cjgou6AAAgAElEQVSqh8YwanZByuONsjLokJ9Lu+a5HHJAPhPnF3LTs5NolDWZk/q05Zz++zO0T9sGvfRt2PTlNM7OZPhPhjBu3mr+8eEc/jJsJveOmMVZ/TrwzeO61eoDltJv1OwCDjkgv0aN2087qD092zblnmEzObtfh1otx0mHt6YspVVeDus2lTFmjoGRtu/ud2eytriUX5zVt06WyrbIy2Fglxa8O305N9XwJsbyNcVMmF/Ij049kKVrinl5wiJKyioaVD+wfd2+VINJkqSGqSbTRPKAXGAksBG4Lca4ea3F6nQNbHd7ffISiksruPDwjtUeG0LgN+cfwrK1xdz28me0b57LyX3b7YZRpnp89DxysjK4eKv+F6cd1I4ebfK4d/gsvnpoh2o/kPz6X1MYNbuAm049kEM75tM+P5f2zXPJb5yd8toYI+PnF/KvSYt59dMlvPHZUpo2yuK0g9vx1f77c1yP1g3qw0aMkfemL+e4nq3Izc7kuJ6tOa5na+auXM8jo+by3NiFvDxxMQO7tOBvlx1O+3xnHNXU8jXFXPPIWL55XFcuqMHvTE2t31TGpAWFXHtC9xodn5ERuGFID256dhLvTV/OKQdV/3u4oaSMB0bO4eJBHemQ33hXh7zFprJyhs9YwdmHdmBuwXrGzFm1U+eZungN3dvkNeggVjtvzsr1PDZ6Ll8b1Ik+7ZvX2XlP7tuOO96YzpKijTX6e715Odrph7Rn7sr1PPHxfMbNW13tUlDtdvtEDSZJkhqmmny6nwv8EOgM/A9wawjhvRDCo8DjaRzbbvXCuEV0b53HYTWcbZKdmcHfLjucg/fP58YnJzBxQWGaR5hq3aYyXhy/kLMP7UDLvJyU5zIyAtef2INpS9Yw/PMd96V4esx8nvh4Pted2J3vn9yLIb3b0qd9c/ZrkrNN0BRCYGCXFvzqnIMZ/fOTePyaozizX3venrqMb/7jEwb+5m2+99QEXpm0mDXFpXX+nmtr5vJ1LFy9kaF92qY83rV1Hr/86sGM+vlJ/PKrB/HZoiLu/Pf0ehrlnqesvILvPTWByYuK+OU/p7BsTXGdnXvsvNWUVcRafWj9av/96diiMX8dNrPavmKbysq57rFx/PHtz/nRs5PqtA/ZR7MKWLepjNMObseR3VoxZXERa2v5e7C0qJiz/zKS7zw+jvKK+u+Rprp3xxvTyM7M4KbTDqzT856c/Hfu3WnLa3T8W1OX0bVVE3q1bcoxPVqRlREYUc3/X6hezGUfqMEkSVLDVG1gFGO8JsZ4XYzxWzHGK2OM58QYTwJ+D5yY/iGm3/yCDYyZu4oLB3as1fKAvEZZPHT1EbRulsM1D3/C3JXr0zjKVC9NWMT6kvIqe06ce9gB7J+fy73DZ1V5jvHzV/P//jmFE3q15qen96nV9bMyMzi+V2vuvKg/Y289hQe+MYgzDmnPRzNX8v2nJjDw9re58sGPeeSjuSwq3Firc9eV96YnPjgN7d12u883y83mm8d14+pju/LSxEXMWLp2dw5vj/W/73zBx3NW8YOTe7GpvIL/enVqnZ37o1krycoIHNG1RY1fk52ZwfUn9mDigkJGzSqo8rjyisgPn5nIyC9WcvrB7fhoVgHPjl1QF8MG4K0py8jLyeTYHq05qltLKmKigXdtjPh8ORUx0Qvp969Pq7Ox7S4NYSOAhuzj2QW8OWUZ15/Yg7bN6nZGY8+2TencssmWf/d2ZE1xKaNmreT0g9sTQqBZbjYDu7TgfQOjBmdfqMEkSVLDtcPAKIRwwVZ/moQQhocQXgJ+B1y3e4aZXi+MX0gIcP6AA2r92jbNGvHIN4+kIkau/scYCtZtSsMIU8UYeXzUPA45oHmVM6JysjK49oTujJmzinHztl0as3xtMd95fBzt8hvxl0sHkLkLvV8aZWVyykHtuPOi/oz5xSm88J1j+I/ju7GocCO/fGUKx93xHhfc8+Fu+dlU9t705fRp34z999vx8ozrT+xB05ws7nprxm4a2Z5r+Izl/HXYTC4Z1IkfnnogNw7tyWufLmH4jJrNaqjO6FkFHNZpP5rk1K6p+kUDO9K2WSP+Omzmdp+PMXLLi5N5ffJSbj2rL/dePpCjurXkN69Nq5MZUhUVkbenLmNI70RPrwGd9yMrI9R6WdrwGSvokJ/LVcd04YEP5vDMJ/N3eWy7y6LCjRz/h2G8MG5hfQ+lQaqoiPz29Wm0b57Lt2q45LI2Qgic3LctH85cycaSHe8GOWz6ckrLI6dV6rE1+MA2TF2yhuVr627GoHbNvlKDSZKkhqu6GUb/TWJXjt8ClwAdSPQ9uga4Ftjj1/HEGHlxwkKO7dGq2mChKt3bNOWBq45gSVExNzwxPu132T+Zu5oZy9Zy5dFddjgj6utHdqJFk2zuGZY6y6ikrIIbHh9P0cZS/u+KQezXJKeKM9ReZkZgYJeW/PyMvrz3oyG8+6MT+cnpvRk/v5Bn6nA2R3WKNpYydt5qTuqz/dlFlbXIy+G6E7vz9tRltZ4Rsi9ZXLiRHz4zkT7tm/Hrcw8G4LoTu9O9TR63/fOzaj+kVmdNcSmTFxXtVA+V3OxMvnVCdz6aVcD4+an/G8YY+f0b03lm7AK+d1JPrj2hOxkZgTsuPJSSsgpuffmzXf6dnbCgkJXrNnHawYkeSk1ysujXMb9WgVFpeQUffLGSIb3bcNvZB3FCr9bc+vJnfDy76llTDckL4xayqHAjP39xMhPm+3u0tVcmLebThUX85PTeNM5JT3+qk/u0Y1NZBR/MXLnD496asow2zRoxoNINhxOTu7WN/HzHr9VutdfXYJIkqWGrLjAqiDE+AiwFxiUf6wHcRaKQqfvbpLvZJ3NXs2DVxho1u96RgV1acPMZffh4ziompLmf0WOj59EsN4tz+u94RlSTnCyuPrYb705fzvSla7Y8fvurUxk7bzV3XtSfg/avu6ar29OjTVO+O7Qng7q04IVxC3fbkpWRX6ygvCLWKDAC+OZx3WjdNIf/fnO6y2q2ozTZt6ikrIJ7Lj98S0PmRlmZ/O78fixYtZG73/til67xyZxVVEQ4pvvONd297KjO7Nckm3u2mmV074hZ3Pf+bL5xTBduOvXLvjHdWudx06kH8vbUZbw+eekujf2tKUvJyggMqbT88chuLZm0sJDi0poFaePmrWbtpjJOPLAtWZkZ/PWyw+nUsgnfeWI8C1Zt2KXxpVuMkRfHL6R/p/1ol9+I6x8fx/I67G21q9ZtKuPcv33IyC/qZ8lVcWk5d/57Oocc0HynZrLW1JHdWtKsURbvTlu2w7EMn7GcUw9ql7Kr4EEdmtO6aSP7GDUse30NJkmSGrad2dKqEBgOjEh+vUd7YdxCmuRk8pVDdn3764sHdaJpoywe/Wjurg+sCsvXFvPvz5Zw8cBONbpLfdWxXcjLyeTvyV5Gz36ygMdGz+O6wd05p//+aRvn1i4a2JFZK9YzaWHRbrnee9OXs1+TbAZ0rlkvnLxGWdw4tCejZ69i5BfeYd/af785g3HzVnPHhYfSvU3TlOeO7t6KiwZ25P73Z+9SH6hRswrIyczg8C41719UWV6jLL55bDfembacaUsSAekTH8/jzn/P4NzD9udXXz14mxl51xzfjX4H5PPLVz6jcEPJ9k5brRgjb05ZyjE9WpHfOHvL40d1a0lpeWTC/Jr9Mzl8xgqyMgLH9UwEZvmNs3nwqiMor4hc88gntW6gvTtNWFDI3IINXH5UZ+67chBrNpZx/ePj2FS2a7PO6sqrkxYzaUEhj46aVy/Xf/CDOSwuKuYXZx6UEtLUtZysDAYf2Ib3pi+nooqm6R/NWsn6knJO22pHwYyMwOBerbeE7Wqw9qoaTJIkNWzVBUbNQgjHAvnA5u7KxSR27Zib/HqPtbGknNcmL+GMQzrUumfK9jRtlMVFAzvy2uQlrFibnn49z36ygNLyyBVHd67R8fs1yeGyozrzr0+X8K9Ji7n15c84vmdrfnJ677SMrypnHtqBRlkZPD8u/cvSKioiI2as4MQD29SqN9OlR3WmY4vG3Pnm9Co/bO2L3pqylPven82VR3fhq1WEjLec2ZdmuVn84qXJO/2zGzW7gAGd99ul7eSvPrYreTmZ3DN81pa/7yf1actdF/ff7gf1rMwM/nDhoRRuKOX2V3euyfTM5euYW7AhpR8MwMAuLQmBGi9LGz5jOYO6tqBZ7pehU7fWedx7+eHMWrGeHzw9Me0f5ItLy3cq5Hlp/CIaZWVwxiHt6duhOXdd3J/x8wv51StTGsSMvc3LYUd8vmK3B29FG0v5+4hZnNK37W7Zsv6kPm1ZvnYTny3efjj/5mfLaNYoi2N7tN7muRN7t2H1hlI+W7R7gn1Va6+uwSRJUsNXXWD0IHAk8AgwC1gJNAX+H3Ab0DWdg0u3t6YuZd2mMi4cWHdLBK48pgul5ZGnxtSuWW15ReTmFz7lt69N5bNFRdv9kFVWXsGTH8/nhF6tt5nlsSPXHN+djADfe2oCbZsnmlxnZe7M5LKd1zw3m9MPbs+/Ji1J+6yDSQsLKVhfUuPlaJs1ysrkh6ccyGeL1vDGZ7u2RKkmNpSUcel9oznujve45P9G8aNnJ/Gntz/nubEL+GjWShas2kBpeUXax7EjC1Zt4MfPTaLfAfncenbfKo9rmZfDz8/sy9h5q3dq57HCDSVMXbJmlz9Q5zfJ5opjuvDap4v54TMTOaJrS+65/HCyd/D3/aD9m3P9iT14YfzCnVqO8+aUxN+VU/umztjIb5xN3/bNGTO3+h5ES4o2Mn3p2u3u6Hdsz9b86pyDeW/6cu54I307p8UYuez+0Xz70XHVH1xJSVkF//p0Macd3H5L2HXWoR347tAePDVmAU98XL+Nu79YtpYJ8ws5/eB2lJRV1GgXsbr08IdzWVtcxn+ecmD1B9eBoX3akhHgnWnbvs/yisg705YxtE9bcrK2/Z04vmdrQsBlaQ3HXl2DSZKkhq+61OAToEOM8c/A6zHGIuA/gQtijKcA/073ANPp+XELOWC/xhzdre7u+vZo05QTerXmiY/n1erD/ovjF/L0Jwt48IM5nP2XDzj5jyP48ztfMGfl+i3HvDd9OYuLirni6C47ONO22ufncskRnWicncl9Vw6iRV7dNbmujQsHdqRoYynvbueDTF16b/pyMsKXTVxr47wBB3Bgu6b8z1szKEtzWHP7q9MYPSexK1hFjHw0ayV3v/cFP3n+Uy67/2NOuHMYB/2/f/PAyNk7df43pyzl5y9+WuMeOlvbVFbOd58cTwT+dtnhNMra8cyfiwd25MhuLfn9G9NZWcsd8T6es4q4C/2LKrv2+O40ysqkd/tmPHDVoBrNWLrxpJ70aJPHLS9OZv2mslpd762pyzis0360z992m/Qju7Vk3LzVlJTt+O/SiBmJD+hDthMYAVx5dBeuOqYL94+cs1OBXE18urCI8fMLGfH5CibWog/bsBnLKdxQygWHpwbvN53am6G92/CrV6bUere4uvTMJwvIygjcft4htGveiNcnL9lt115bXMqDH8zmlL7tOOSA/N1yzZZ5ORzeuQXvTd+2j9G4easpWF+ypTn71lo1bUS/A/J538CoodirazBJktTwVRkYhRBygf8C/hxC6A78PoSQB3QGHg8hvAPssfuQLy0q5sOZK7ng8APqvKfEVcd0ZdmaTbw1perGo5UVl5bzx7c/p3+n/Rh/26nccUE/2jXL5X/f/Zyhdw3n3L9+wAMjZ/PAB3PokJ/LybWcOQPw63MO4aObT0p7k+sdOb5na9o1b5T2bbffm76cwzu32Knd3zIzAj8+rTezV67n+TSO880pS3lqzHyuG9yDv11+OM9dfyyjfn4yM24/gxE/GcIT1x7FHy7sx+BebfjNa9P4w79r14z74Q/ncP3j43hqzAJuf3XqTo3xN69O49OFRdx1cX86t2pS7fEhBH53fj82lJTx29dqNxNm1KwCGmVlcFjn/ao/uBptmjXirR8O5rnrj6F5peVdO5KbnckfLjyUxUUb+e83a/7P2uLCjXy6sKjKD+BHdWtJcWkFk6tZ4jN8xgo65OdyYLuqZw5u3jntFy9N5luPjuXhD+fw+bK1dbbk66kx82mcnUnz3KxtGofvyEvjF9G6aSNO6Jm6xCkzI/C/Xx9Ap5ZNuOGJcSwu3Fgn46yNkrIKXpywiFP6tqNts1zOOKQDw2esqHUouLMeHTWPNcVlfP/knrvlepud1Lctny1aw9Ki1BVLb01ZSk5mRpXBJCSC9vHzV1O0oeH2zNoX7O01mCRJ2jNUGRjFGIuBITHGxUA58J0Y4/oY470xxnOAK4D0fvJPo5cnLqIiwgW7uDva9gzt05ZOLRvzyKi5NTr+Hx/OZUlRMT8/ow/7Ncnh60d25qlvH82om0/m1rP6UhHhN69NY8ycVVx2ZOedWk6WmRHqbWZR5TGcP6Ajwz9fkbYeT8vWFDNl8RqG7kSottmpB7VjQOf9+PO7X+z07JwdWbammJtf+JRDDmiesmsXJJrWdmmVx3E9W3PJEZ257xuDuOyoztw7fBa3vDS52h42FRWRO96Yzq/+NZVT+7bjP47rxhMfz+flCYtqNcZHR83lsdHz+NYJ3Tj94Jo3hO/ZtinXn9iDlyYs4sNqtvaubPTsAgZ1bVHtLKaa6tSySa37kg3q2pJvHN2FR0bNZdy8ms2IeSe5G9VpB23/Z3REt5bAjvsYlZZX8OHMlQzp3WabptyVbd457ZIjOjFj6Vp+9a+pnPan9znyd+/yg6cn8Mwn83d6N7W1xaW8Mmkx5/Tfn6uO7cpbU5cxc3n1DcyLNpTy3vTlnNN//+3+u5TfOJv7vzGQ4tIKrntsXFp+n3bk3WnLWLW+hEuO6ATAmf06sKmsgnd3w7K0dZvKuH/kbIb2bsOhHXc9CK2NU5LLI9+tNMsoxsibU5dyXM9WNG1U9e/G4APbUBHhw1k2/69Pe3sNJkmS9gw7TB5i8tZ1jHFejHHpVs8tjTE+k87BpUuMkRfGLWRglxZ0a51X5+fPzAhceXQXxsxZtWW3pqqsXl/CPcNncnKfthy91XKc9vm5XHtCd/71veN590cncvt5h/Afx3er8/HuThcNPIDyisg/J9YuwKipYckPgrXtX1RZCIGfnN6bJUXFPFbHuypVVER+/NwkNpaW87+XDNhuH5HKMjMCvz3vEG4c2pOnxizge0+Nr7IHVElZBT96bhJ/HzGLK47uzL1XDOSWM/twZLeW/PzFyXyxrGY7mA2bvpxfvTKFU/q25eYzqu5bVJXvDu1J11ZNuPXlz2oUEBSs28T0pWvrZDnarvrJV/qwf35jfvr8p2wsqX7sb05ZSo82efRsu/2ZQa2bNqJn26aMmVN1H6Nx81azdlPZDmd9bJbfOJvfnNeP9386lJE/HcqdFx7KsT1a8dGsAn72wmROuHMYZ909kjW1bOz88sTFbCgp57KjOnP1sV3Jzc7g3uHVL4V8dfJiSsortlmOVlnPts340yWHMXlRET99/lPmrly/25rKPzt2Ae2b5zI4uTx1YJcWtGnWiNc/Tf+ytMdHz6NwQynfO7lX2q+1tV5tm9KpZWPeq7T8d9qStSxYtbHaAHhAp/1olpvlsrQGYG+twSRJ0p5j93Y+biAmLyrii+XruDANs4s2+9qgTjTKyuDRUXN3eNxfh81k/aYyfnZGnx0e16NNU648ugt5O7gzvCfo2bYZ/Tvmp22513vTl9MhP5c+7Zvt0nmO7dGaE3q15p7hM2v94XtH/vHRXEZ+sZJbzzqoypBhayEEfnx6b249qy+vT17KNQ+P3WZJzbpNZVzzyCe8NGERPz7tQG4/9xAyM0JiVsqlA8hrlMl3nhhf7VKcqYvXcOOT4+nboTl//vqAWu0yt1ludia/Oa8fc1aur9HSpo+Ts292xw5S1WnaKIvfX9CP2SvXV7stfNGGUkbPXrXN7mhbO7JbS8bOXV3l7LBhM5aTnRk4rue2u1btSKeWTfjaEZ3489cHMOaWk3n7h4O55cw+TFm8hoc+mFPj88QYefLj+RzUoTmHdsynVdNGfP2Izvxz4iIWVbOM7MXxiziwXVMOrmap66kHteOmUw/klUmLGXLXcA799Vt87e+j+NUrU3h27AKmLC6qts9TbS0tKmbE5yu4aGDHLX+PMzMCZxzSnmEzlqd1WdqGkjLuf382J/RqzeGdW6TtOlUJIXByn3Z8MHPlluDzralLCQFOOWj7yyc3y8rM4LgerRnx+YoGscOdJEmS6s8+GRi9MG4hOVkZnHVoh7RdY78mOZx32AG8NGFRlb0gFqzawGOj5nHxwE4c2G7XAo49yYUDOzJ96VqmVLHt887aVFbOBzNXMrRP2x0u7ampn57eh9UbSnng/Z1rOr21aUvW8Ic3pnNK37ZcflTnWr/+2hO6c9fF/Rk1u4DLHviY1etLAFixdhNfv28UH80q4M4LD+XGk3qlvP+2zXO5++sDmL1iHbe8NLnKD4HL1hRzzSOf0Cw3mwevOmKXwsnje7XmggEHcO+IWXxezcymUbMKaJKTuduX7VRl8IFtuOOCfoz4fAU/eGpilc3P35uxjPKKyGnVfAA/qltL1m4qq3K24YgZKxjUpeUOlwlVJ4RAr3bN+PbgHpx+cDseHDmHwg0lNXrtpIVFTFuyhsuO6rzl7823BncH4P4d/N2fV7CecfNWc/6AjjX6ffv+yb147fvHc8cF/bjg8AMoj5Fnxy7gp89/yll3f8DBv/w3F9zzIc+PW1gnS9eeH7eAiggXD0q9MbB5WdqwGelblvbE6PkUrC/hB/Uwu2izk/u2ZVNZxZaloW9OWcagLi1o3bRRta89sXcblhQVM3P5unQPU5IkSQ3YPhcYlZRV8MqkxZx6UDvyG9esIe7O+saxXSgureC5cdvf1eiut2aQkQE/PHX3bLfcUHz10P3JyczghXE1W5b2xuQl3DN8ZrV3u8fMWcX/b+++w6Qqsj6O/2oSOUuQJKAEAUmSVUAQERMq5hwRw7qvrnFNa1x13XVVXBXWiLIuKoo5IFHJSQQFlSA5S2aGCfX+cWZ26GFCd08nmO/neeaZpvv2vTXVt5u6p+uc2rMvW32DSO0JxjENq+m0Yw7X8CnLdM+YBfr6xw3asy+8WQnpmdn6v3fmq2qFVD05uF3YAa1zj22oly49Vj+t26HzXp6maUu3aPCLU7V0426NuPxYnZ9bq6Wgnkcdptv6t9DY+WsLXeZ8d0aWrn59lnbszdSrV3YpdMWvUN172tGqXC5F94z5odgUpGnLtqhzk5pKDaM2V7Rc0KWxHji9tb5YtF53vreg0PZ/uXCD6lYtp/YlBLq6NCm6jtG67Xu1eP1O9WkZ+op+Rbm1fwvt2pel4UEGOkfN+E0V05I1qEP9/93XoHoFDerQQO/MWqktRax498G8NXJOOqtj/UIfL0yb+tV0YdfGenhQW71/Q08t/MsAjf9Tbz1/UUdde0Iz7UzP0u3vfq8ef/1GT36xWKt/D68mU06O1+jZq9W9WU0dUSsw7bhLk5o6rHL0Vkvbuy9bL09epuOOqqXOua99PHRrWkuV0pL1zeKNWrV1j35atyPoemR5KXyTSEsDAAAo0xLnCi1Gxi/eqN/3ZOrcKKaj5WlTv5q6NKmhN6f9dkA6ysI12zV2/lpdc3zTiFycH0xqVEpTv6PraOz8NcosYen6CYs36ub/zNNTXyzRXz8vfqWw8Ys3Ki0lST2Pilxq0/2nt1a/o+vq4+/X6bo3Z6vDw1/rytdmauS0FSFdzD7x+WIt2bBTT5/XTrWC+Ia/OP1b19WbV3fV+u3pumjEdO3KyNJ/hnRX31bFz3S5sc9R6tOyth7++EctWJ2/bHp2jtcf35mnn9bt0LCLO0VsJb1alcvpvtNaa85vv2vUzAODVJK0cafNYkiE+kUFXX18U/2pfwuNmbdGD3y0MODcS8/M1qSfN6l/67olrrJYv3oFNapZodCA0aQldkFemiLtBbWqV1Wnt6uv16eu0OYigj15dqRn6uPv1+nM9vVVpcCKcjf0aaaMrBy9PnXFAc/z3uuDeWvUo1ktHV6tQthtTUpyala7ss5oX193ndJKX93aS6Ou66auTWvq5UlL1eupCRry5mxN/XVzSOlR05dv0cqte/5X7Hp/yUlOp7Stq/GLN4YdAC7Of2au1OZdGbqlb/xmF0lWQL9Xi9oav3iDvlxk5W+KKs5eUIPqFXRUncoEjAAAAMq4MhcwGjN3tWpXKacTmodWLyRcl/doopVb92jSz/npD957/fXzn1SjYqqu731kTNqRaAZ3aqgtu/dp4pKiL0h+WL1dN42aq1b1qujibo01fPIyDRtfdE2cCYs3qkezWiGvjlWcetXK64WLO2nu/f319rXddGm3I7Ri827dP3aRjn9ygk7552T99bOf9MXCdVq3fW+hF7UTl2zU61NX6MqeTYIqbByM7s1q6Z0h3XVm+/p6b2gPdWhUcjpXUpLTM+d30GGV03Tj23P/lyr52Kc/adxPG/XgGW0iGriQpHM6NdBxR9XSk58v1oYd6Qc8Pn1Z4tQvKszNfY/S9b2b6a3pK/XEF/kBy29/2ay9mdlBX4B3bVJLM1dsPeD8mLBko+pXK6/mQdazCtb/ndRc6ZnZemni0mK3GztvjfZmWrHrgo6qU0Unt66rN6au0K4C9X7mrvxdv23ZE/FVJp1z6nnkYXr5ss6acldfDe19pGb/9rsu/vcM9X9msj5ZsDao/YyetUpVyqdoYNvC045PPeZwpWfmaMLiyAZE0jOz9dKkperWtKa6JUAQtN/RdbVhR4aGT16mVvWqqHGtikE/t3eL2pqxfGtQxd8BAABwaCpTAaOtu/dpwpKNOqtD4UtAR8MpbeupTpVyemNq/mpbk3/ZrO9+3aJb+jVX1fLRTYtLVL1b1latSml6v4ji16u27tHVb8xSjRnHxW8AACAASURBVIppeu3KLnp0UFsN7tRQf//650IL+i7btEsrtuwp1epoxUlLSdJxRx2mB85orYl3nKjxf+qt+047WjUqpunV75Zr6Ftz1eOv49Xt8W903Zuz9cKEX/XtL5u1YvNu3f7uArWoW1l3l1DYPFRtG1TTcxd1VLPawQcbalRK0wuXdNKGHen607vz9cbUFXr1u+W66rgmuqJnk4i2T7IAwGNnHaN92Tn6y0eLDnh82tItqlwuRW0jNKsp0pxzuvuUVrq0e2O9PCk/YPnlovWqUj7lgJUNi9KtaU1t3b1PSzfl14TZl5Wj737dot4tI1Nza39H1q6sszs21MjpvxUaqJMscP32jJVq26BqkfWjbuhzlHakZ2nUjMDVAsfMXaPyqUk6pW1wAbNwNKheQXee0kpT7+6rv5/XXqnJSbp51DyNKiSlcn/b92bq84XrNahDfZVPTS50m25Na+mwymkRT0sbPXuVNu7MiGvtov2d2LK2nJM27swIOh0tT68WtbUvK0fTi1nhDwAAAIe2g3vJrRClpSTpvtNah7waUWmkJifpkm5H6JlxP2v55t1qXLOi/vrZT2pcs6Iu6XZEzNqRaFKTkzSoQwONnL5Cv+/epxqV0v732PY9mbrq9VlKz8zWqGu7qU5VS9l7cvAx2p2RpYc/+VGVy6fo/M756SbjF9sMrmgFjApqVruymtWurGtPaKaMrGz9tG6nvl+1Td+v2qb5q7fp6x83/G/btOQkjbyma5EXr7HWsXEN3Xvq0frLxz9q3E8bddLRdXTfaa2jdrwmh1XSH09qrqe+WKKvFq0PWFVs+rIt6tq0ZswCuOFwzunhM9tqT0a2/v71zyqfmqxxP21Q31Z1lJYSXLu7NrVaNjOWb9VRdazA/ZzffteujKyI1i/a3x/7NdfY+Wv0rwm/6qFBbQ94fP6qbVq8fqceO/vAx/J0aFRdPY+spX9PWa4rejZRuZRkZWRl65MF6zSgTb1SFeoOVvnUZA0+tqFOb3+4ho6coz9/8IOcky7qWnjh+I/mr1FGVo4u6Fx0YfnkJKcBbeppzNw12rsvWxXSSv/ezMjK1osTl6rzETUSZsZcrcrl1LFRdc1duU0ntyk+ZbWgbk1rqlxKkib/vEknRmhmJAAAAA4uiXuVFgWVy6Xoip5Ngl7OPFIu6tZIqclOb05boQ/nrdHi9Tt1x4CWQV9sHqrOPbahMrO9Pt4vzSQjK1tDRs7Wyi17NPyyzmq+3+pxKclJevaiDjqh+WG6+/0F+nRB/uyACUs26qg6ldWoZvApF5FSLiVZHRpV1xU9m+gfF3TQ+D/10fcPnqyR13TV7Se30AuXdNLRhyfWDJorejbRhV0aqWvTmnr2wo7/W3Y8Wq47oZla1auiB8Yu0s50S4Vbvz1dyzfvTsj6RQUlJTk9dW47ndKmnh777Cf9vicz6HQ0STqiVkXVqVIuoI7RxJ83KjXZRS2A3bhWRZ3XuaH+M3OV1mzbe8Djo2asVKW0ZA3q0KDY/dzY5yht3JmhMXOtSP2ExRu1fW+mzu5Y/PMirVxKsl689Fj1aVlb94z5Qf+dVfhMo//OXqWjD6+qtg2Kf8+ddszh2puZrYlBrJa2OyNL3/6yucjZWpL03pzVWrc9Xbf0ax7xGWOlceVxTXVKm3pqHeJnUPnUZHVrVos6RgAAAGVY2Y5YxEidKuU1sO3hem/2av39qyVql7v6VlnXun5VHX14Vb2Xm5aWk+N1x7sLNGP5Vv3tvHaFfktfLiVZL192rDo1rqH/++88TVyyUbsysjRz+daYzS4KRrUKqTqheW3d3Le5+pew7Ho8OOf0xOB2Gn19D1WKwSyR1OQk/fWcY7RhZ7qe/nKJJGnaMlvuO1FmY5QkL2DZu0VtVauQqt4hzAxyzqlr05qasSy/jtGkJZvUpUnNqM7SuTm38PKw8b8E3L99b6Y+XrBWZ3ZoUOLxjzuqlo5pUE0vT1qq7ByvMXPXqHaVcjo+hjM185RPTdZLlx6r3i1q6+4xP2j0rMAVKBet3a6Fa3bogs4NSwzadG1aUzUrpenTEtLSdqZn6uJ/z9Clr8xQt8e/0XFPjNct/5mn179brh9Wb1dmdo72ZeXoXxOWqmPj6jGrjxesM9vX10uXHRtWEKt3i9patmm3Vm0Nb7U6AAAAHNwIGMXIFT2baGdGltZuT9fdA1uVuLJSWTG4UwMtWL1dv2zYqb99tUQffb9Wd57SsthZDxXTUvTqVV3Usl4VXT9yjv759c/KzPakTSS4jo1r6IoeTfTm9N80d+XvmrZ0i6qWT0m42VfFKZeSrNeu7KLJd5wYcqCnW9OaWr8jXat/36u12/Zq8fqdUUtHy9OgegVd1LWRRs9erd+27P7f/WPnr1F6Zo4uKaTYdUHOOd3Y50it2LJHo2au1IQlGzWofezqwBVUPtWCxic0r627xizQ6Nn5QaPRs1YpLTfdtSQpyUka0Kaexi/eqPTMwgs7787I0pWvzdKiNdv16Fltdf/prdWhUXXNXL5Vf/n4R50x7Fu1+8tXOuP5b7Vm296Em11UWr1bWPBr8i/MMgIAACiLCBjFSKfG1dWlSQ0NaFNXPY9MrG+g42lQhwZKTnK65Z35enHiUl3crbFuCGLluKrlU/XGVV3VsEYF/fvb5apSPkWdm9SIQYtRGrcPaKl6Vcvrnvd/0He/blH3ZrWing4XaUlJTtUqhl6svmtTm0k1fdmW/6X5RGrVvOLcdOJRSklyevYbm2XkvdeoGSt1TINqatugWlD7GNCmnprVrqSHP16kzGyvszvFNh2toPKpyRp+2bE6/qjDdNf7C/TenNVKz8zWh/PX6uQ2dQNqohXntGMO1559hael7d2Xratfn6X5q7bp+Ys66tLuR+ia45vqhUs6afqf+2nq3X31/EUddUGXRiqXmqQBbeqqT4voBgBj7cjaldWgegUtWrsj3k0BAABAHJSpotfx5JzTO0N6xLsZCad2lXLq06K2vlm8UX1b1dHDZ7YJ+hv6WpXL6e1ru+viEdPV/chaSk3gwskwlcul6OFBbXXdm7MlSdee0DTOLYqd5nUqq3rFVM1cvlU70jNVv1p5NY9BPbU6Vcvr8h5H6JVvl+vGPkdp+95MLV6/U38955ig95GU5DS015G68/0Falm3Ssj1cKKhfGqyRlzeWde9OVt3vPe9Ji6x2koXdGlU8pNzdW9WUzUqpurTH9brlLb5acLpmdm67s3ZmrViq565oIMGFpJCXL96BdWvXkFntK8fkb8nETnn9Oktx6t6xeACcAAAADi0EDCKoYNtJkWs3Nq/hepVK68/n3p0yGku9aqV17jbestHqW2IvP6t62pg23r6fOH6g6Z+USQkJTl1aVJTU5du0fa9mTqzQ/2YpS8N7X2k3p6xUv8cZ6u8VUpL1pkhBjrO6thA781ZrfO7NEqYtKu8oNG1b8zWJwvWqUH1CjouhBmceWlpH32/VumZ2SqfaqvADX1rjr5bullPn9s+qPS2QxnBIgAAgLIralMynHN1nXNTcm83cM6tds5NzP05tObto1TaNqimx84+Juziy0lJjmDcQeaJc9rphYs7qVW9+M9UiaVuTWtqzba92pWRFdP0pVqVy+nKnk30yYJ1+uj7tRrUsUHI77e0lCSNHtpD5x7bMEqtDE9e0Oj8zg11Vxj14U7NTUub9PMm7cvK0U1vz9PEJZv017OP0eAE+1uBYDEGAwAAkRCVGUbOuRqS3pBUKfeubpIe896/GI3jATi4VKuYqtPalb2VArvl1jFKTXbqGeNVxob0aqaR037TzowsXdy15GLXB5MKacl66tz2YT23x5G1VL1iqj76fq0+nLdG437aoEcGtdGFh1gfoexgDAYAACIlWjOMsiVdICmvUmZ3Sdc65+Y65x6P0jEBIKEdfXgVVS6Xoi5Naoa8ylppVa+YpntOPVrnd24YdLHrsiA1OUkDWtfTpwvW6fOF63X/6a11WY8m8W4WUBqMwQAAQEREJWDkvd/hvd++312fS+ojqYukHs65dtE4LgAkspTkJD1/cUc9cEbruBz/4m6Nw56Jcyg7p1MDJTnp7oGtdM3xZacQOw5NjMEAAECkxOor7qne+wxJcs7Nk9Rc0oKCGznnhkgaIkmNG5MOAODQc2LLOvFuAgro1qyWvn/wZFUpnxrvpgDRUOIYjPEXAAAoTKzWIf/SOXe4c66ipJMlLSxsI+/9cO99Z+9959q1qckIAIgNgkU4hJU4BmP8BQAAChOrGUYPSZogaZ+kl7z3S2J0XAAAgLKMMRgAAAhLVANG3vs+ub8nSGoVzWMBAADAMAYDAAClFauUNAAAAAAAABwkCBgBAAAAAAAgAAEjAAAAAAAABCBgBAAAAAAAgAAEjAAAAAAAABCAgBEAAAAAAAACEDACAAAAAABAAAJGAAAAAAAACEDACAAAAAAAAAEIGAEAAAAAACAAASMAAAAAAAAEIGAEAAAAAACAAASMAAAAAAAAEICAEQAAAAAAAAIQMAIAAAAAAEAAAkYAAAAAAAAIQMAIAAAAAAAAAQgYAQAAAAAAIAABIwAAAAAAAAQgYAQAAAAAAIAABIwAAAAAAAAQgIARAAAAAAAAAhAwAgAAAAAAQAACRgAAAAAAAAhAwAgAAAAAAAABCBgBAAAAAAAgAAEjAAAAAAAABCBgBAAAAAAAgAAEjAAAAAAAABCAgBEAAAAAAAACEDACAAAAAABAAAJGAAAAAAAACEDACAAAAAAAAAEIGAEAAAAAACAAASMAAAAAAAAEIGAEAAAAAACAAASMAAAAAAAAEICAEQAAAAAAAAIQMAIAAAAAAEAAAkYAAAAAAAAIQMAIAAAAAAAAAQgYAQAAAAAAIAABIwAAAAAAAAQgYAQAAAAAAIAABIwAAAAAAAAQgIARAAAAAAAAAhAwAgAAAAAAQAACRgAAAAAAAAhAwAgAAAAAAAABCBgBAAAAAAAgAAEjAAAAAAAABCBgBAAAAAAAgAAEjAAAAAAAABCAgBEAAAAAAAACEDACAAAAAABAgKgGjJxzdZ1zU3JvpzrnPnbOfeecuzqaxwUAACirGH8BAIBIiFrAyDlXQ9Ibkirl3vUHSXO898dJOtc5VyVaxwYAACiLGH8BAIBIieYMo2xJF0jakfvvPpJG596eLKlzFI8NAABQFjH+AgAAERG1gJH3fof3fvt+d1WStCb39lZJdQs+xzk3xDk32zk3e9OmTdFqGgAAwCGJ8RcAAIiUWBa93iWpQu7tyoUd23s/3Hvf2XvfuXbt2jFsGgAAwCGJ8RcAAAhLLANGcyQdn3u7vaQVMTw2AABAWcT4CwAAhCUlhsd6Q9JnzrkTJLWWNCOGxwYAACiLGH8BAICwRH2Gkfe+T+7v3yT1l/SdpJO899nRPjYAAEBZxPgLAACUVixnGMl7v1b5K3UAAAAgyhh/AQCAcMSyhhEAAAAAAAAOAgSMAAAAAAAAEICAEQAAAAAAAAIQMAIAAAAAAEAAAkYAAAAAAAAIQMAIAAAAAAAAAQgYAQAAAAAAIAABIwAAAAAAAAQgYAQAAAAAAIAABIwAAAAAAAAQgIARAAAAAAAAAhAwAgAAAAAAQAACRgAAAAAAAAhAwAgAAAAAAAABCBgBAAAAAAAgAAEjAAAAAAAABCBgBAAAAAAAgAAEjAAAAAAAABCAgBEAAAAAAAACEDACAAAAAABAAAJGAAAAAAAACEDACAAAAAAAAAEIGAEAAAAAACAAASMAAAAAAAAEIGAEAAAAAACAAASMAAAAAAAAEICAEQAAAAAAAAIQMAIAAAAAAEAAAkYAAAAAAAAIQMAIAAAAAAAAAQgYAQAAAAAAIAABIwAAAAAAAAQgYAQAAAAAAIAABIwAAAAAAAAQgIARAAAAAAAAAhAwAgAAAAAAQAACRgAAAAAAAAhAwAgAAAAAAAABCBgBAAAAAAAgAAEjAAAAAAAABCBgBAAAAAAAgAAEjAAAAAAAABCAgBEAAAAAAAACEDACAAAAAABAAAJGAAAAAAAACEDACAAAAAAAAAEIGAEAAAAAACAAASMAAAAAAAAEIGAEAAAAAACAAASMAAAAAAAAEICAEQAAAAAAAAIQMAIAAAAAAEAAAkYAAAAAAAAIELOAkXMuxTm30jk3MffnmFgdGwAAoCxi/AUAAMKVEsNjtZP0H+/9XTE8JgAAQFnG+AsAAIQllilp3SWd7pyb6Zx7xTkXy2AVAABAWcT4CwAAhCWWAaNZkk7y3neVlCrp1IIbOOeGOOdmO+dmb9q0KYZNAwAAOCQx/gIAAGGJZcBogfd+Xe7t2ZKaF9zAez/ce9/Ze9+5du3aMWwaAADAIYnxFwAACEssA0YjnXPtnXPJks6S9H0Mjw0AAFAWMf4CAABhiWUe+8OSRklykj7y3o+L4bEBAADKIsZfAAAgLDELGHnvF8pW6gAAAEAMMP4CAADhimVKGgAAAAAAAA4CBIwAAAAAAAAQgIARAAAAAAAAAhAwAgAAAAAAQAACRgAAAAAAAAhAwAgAAAAAAAABCBgBAAAAABAtq1dLO3bEuxVAyAgYAQAAAAAQDenpUqNG0nHHxbslQMgIGAEAAABALNx2m9SihXTppdKqVfFuTWiys6Urr7Sf55+Xpk6V9uyJd6sS33//a78XLpS2b49vWyJt3Tr7vW1bfNuBqCFgBAAAAACRtGqVNHKkdPXV0skn59+/c6d01FHS++9LLVtKDz988ARd1q2TPvxQeuMN6ZZbbMZMlSrSRx/Z4+vXSzNmSN7Ht52JxHsLrrVoYQG3atXi3aLI+ewzqWlTO5+ZPXXIImAEAACA6Nu2Tdq7N96tQFnhffwCF3/8o9S4sXT55dLYsVLlylJGhj02YoRdaP/0k3T66dKDD0rvvhufdoaqYUN7H+fkWE2esWOl++6T2re3x8eOlbp3l847T/r99/i2NVHMnCnNmWPnRFKStGWLNH9+vFtVetu3S9dfb8Gi66+XfvxR+vXXeLcKUUDACAAAANE1b55Uq5b0xRfhPf+//7UZGz/+aBekzz1nsxmAwqSnS+3a2WyXWNu3T3rlFem00ywwsGmTNGaMVK5c4HZNmkijR0vTpll6mmQBl7lzY97kkDknNWggnXmm9NBD0hFH2P3nnCM98YT9HR06SN99F992JoIOHaQ335Quu8z+feaZ0gUXSFlZ8W1Xad15p7R2rfTqqxYglOx1P5RkZ0tbt8a7FXFHwAgAAADR1aaNVL689M03oT933Trpwgul//zHvp3PyLBv6xs0kAYMsPQYZi5hfzNmWL2YjRtjf+yUFGn8eOnpp23mTVIJl1vdu0vJyTZr5+67pc6dpeuuk3btik17g+W91LatBWuLUru2dNddFihKSZF695Zeey12bUxE5cpZsKhKFfv3XXdJP/9sgZaD1fjx0vDhVo+ra1cLfrZrd+gFjJ580r7oWLs23i2JKwJGAAAAiK60NKlXr/ACRnnP6ddPOuEEm620aJF0zz3SL79IQ4dKmZmRbS9KtmiRvSZXX51/34svSv/8p/TWW9KXX1raVTxMmmSzYLp2jX3QKCnJjtuqVejPmzZNuvVWm6H06KPRaV+4Fi+217xSpZK37drV3qeXXy717Bn9tiWq4cMtcLh/auQZZ1i9n7/85eCpXVXQ3Ll2fj/8cP59gwZZoHDz5vi1q6B9+6SXXw5/ltCbb9pvAkYAAABAlPXrZxeda9aE9rxvvpFq1rTUjjytW9sF9dKl0oIFUtWqlj6QlyaB6BozRurWzWbx1KqVf/8zz1jA47LLpFNOsddp+vTYt2/SJJsN07OndPvtsT32U09JU6aE99zq1aW//10691zppZekHTsi27bSmDzZfvfqFdz2VavaLJqWLS1gctNN0qefRq99iSYz0wIqX31lwcs8zlna3rp10rPPxq99pXH77RY0qlAh/77LLrMi7xUrhravZcuiU8Nryxapf3/7QuEf/wj9+dnZ9hoNGWKz/sowAkYAAACIvn797Pf48cE/x3sLGJ14oqXtFOSc1Ly53f7hB+mFF6SOHaWJE0vdXBQiJ8eKHA8ebAGZefOkv/0t//ElS+zb/CVL7DXo0CH2NUD27bOZOieeaCmL774buyW/f//dZr6NG1e6/dxxh7R7t/Ttt5FpVyRMnizVq2dFjkO1fbvNPjn9dAvqloVV1MaOteD4zTcf+Njxx9tMo19+iX27SmPmzPzA4f7BIsk+hy++OPSA0bXXSrNnR6Z9eX75RerRw4LVhx9uX1SEasECC9j26mUrG/72W2TbeBAhYAQAAIDoa99eGjYs+BkKkrRypRW7zgs2FadDB7ugqVHDtn/iCQtwIHK2bctfKn7SJKl+/cDHnbP+b9HC6tfMmyedemps27h4sRUU7t3bLkbT06VRo2Jz7PHj7Zzr3790++nSxYINse67onhvgYJevQJnywSrenW7eL/qKgswHgqrhJVk2DArBn7aaYU//t57B1cdo/R0SzG84oqiU4DXrrXZPMHWlPvxR2nCBKlaNfv3woWRaeuiRRakHD/egtfvvRf6PrZts9p7vXpJxx4r/eEPkWnbQYiAEQAAAKIvKcnSUvJWVArGEUdYWsBFFwW3fZs20qxZltJzzz12PJTe0qV2kVizps0G+Pe/D1z1qygZGbGb4SNZ8d1t2yzY0qmTBRJfeSU2x/76aytu3K1b6fdVp4793rmz9PsqrcxM6fzz7Sdc5ctbEFc69FPTfvjBAqo33lj4zEjJ6rpJFuA8GNJoH3rIgi8vvyylpha+zcKF0p/+FPwMu+eft8+R666zlTDbtbPFDcK1dKn9Puss6ddfrVZUXrHxUJ14ov09jRrZ/yeffmpfXpRBBIwAAAAQGzt22GyPUOoY1atnMxSCVaWK9M47Vh/kqqtCbyMCffSRpfk9+KD9u3bt4GeZZGRIDRtKf/1r9NpXmIoVLUDhnM0ymjvXUkyi7euvpT59ir6gDtVNN9lFbyRTuH7+OfQUoLQ0q600eHDpjl2njs2eyktrSiSrVtnsp337Sr+vrCwLWF5zTfHbbdtms1fuv7/0x4ymOXOsb666Sjr55KK369PHalcFs1ra779bUelLLrHPlDPPtEUNLr/cCuaHIi9VtlUrm2Uq5QeKvJeuvFJ6/PHg9+e91TDKc911dl+sAs8JhoARAAAAYmP9ertA+PjjkrfNyZEuvNCKxobKOemWW2y1JslmG02YEPp+yronnrDVj1q2lG64IfTnlytnF8Tvvx+bujWZmZYO9skn+fddcok0dap0zDHRPfaWLbbqVWnT0fbXrZvNVvnii8jtc+pUmzERysqCy5ZFJpAiWcH0zz6LzL4iZcMGS2O9887gPptK0rGjzUjZvyB8YapXt6LKr78e3RUFvZc+/zwwCBKsrCwLfNWpY0HD4qSlSQMHWh+WdKyRI+39csst9u8KFSw43aaNdM45wRfL37vXZqA+9pily3XsGPi4c1Z/6P33g9ufZClttWpZAFiSmja1emgjRlh/lDEEjAAAABAbzZvbjJNgCl9//72lKWzYULpjZmbafm67jZpGoZgzxwJt559vq341ahTefgYPzl/NLtrmzrV0mP1rqFSvbgVww6m9E4patSy16PrrI7fPCy+098tTT0VunzVr2gV0KIHYAQOsoHEkNGwopaREZl+RsH27/X1r1lgtnVACC4WZOlVavTr47e+9V6pUyX5Hy9df24ynN94I/bneW82yl16y+mQlGTRI2rhRmjGj+O2GDrWZRO3b599XrZoFRw8/3Aqkl5TK+u67toLZ6NH2HhkxovDZfX37Wj21YAvwT5pk58X+Bd6HDrX3dyLOjosyAkYAAACIDeds8J5XHLg433xjv4MpeF2c1FRb3nr+fJvdgODcdZeliowYYeld4TrrLKtfVdoL8WBMmmS/CxZW373bLviisXz3/pzLr00TCWlp0q232opzeak24crKssK9RxxhQaO33w7ueWvXWj2Ynj1Ld/z9PfqonV+JoFIlm4k4ZowFHUpTpyknx2a5hBJcO+wwWxXvgw+i8/m0caOlNXbrZqlve/aE9vzUVJsFdOaZwW0/cKDNFiopQJyWVnh6W716Fsx8/vkDU5H37rXgUF5dr9WrbRbj2LHWh0UFhfv2tcBX3udDSSZPtsBmkyb59512mv0f0rdvcPs4hBAwAgAAQOz062fpOyVdUHzzjXT00QeuxBWOiy6yfT3wQHhpGUXx3lJPwg2GZGZaYdyJEyPXpkh59lnptdesJklp1K5tAZxwVioK1aRJVsekbt3A+ytWtPNp2LDoHDc724prv/Za5Pd93XU28+K550q3n1Gj7O9ftsyCImPHSrt2lfy8KVPsdyirG5bk11/jn96TkWHBlJQUafhwm2U0ZIgFOMP15Zf2t4WavnnrrVbwOS+YE8n0zQcekI480tJL166V/vnP4J/7/POhn9PVq1u/Dh1a9DaXXmp9XpRmzfIXOvjuO0unu+46CyZdcIGlrkkWyJo7t+RgVpcuFhgMZmZrXmCpd+/AAFRKSuBsqDKEgBEAAABiJ2/GUHEpC/v22be8pZ1dlCc52WYZ/fRT5JZY//lnS/M4++ySa5UU5YknpBdftEKvu3dHpl2llXex2qZN0UuCh+qRR2xltWjWMcrOlr791i70Csorfj15sr1ukTZnjqVQlmYmVlGqVLEL5BdeCH8fWVn2GrRvbylDl1xiwYkPPyz5uZMnS5UrW0AsUk47zYoeB1unJtKysy1ocdxxB864WbrUAhThGDbMghqhFgevXNkKkefNTHrmGftMKO2qXJmZFqjt29cKUg8aZJ85mzaV/Ny1a6W77w6vflblykU/tmCBzW7bvr3k/ezYIZ1xhn3O/uc/9lk7bpylakpFr0BXUFqaFb5u3LjkbX/+2dKgC/scycmxwt8PPxzccQ8RBIwAAAAQOw0a2IVQEPdbpQAAHZlJREFUcbVe1q+3IsXFrcgTqnPOsdk8rVuXbj+7dlltn7ZtrV7JU0/ZhacU+uylU0+1i8RVq6QnnyxduyJl+HD7Fj+SAazjj7eUpmjWEdq61V6HAQMKf/yKK+wCMxorHeUVx41UgLOgXr1sllG43n7bZr785S+WHtizp3T77XYOl2TyZOvXSNYd6t/fXot4FL/23j573nvPPg8qVgx8/MEHLZgU6uynX3+1QNP114eXlpiaaq+NJKWnW+pVixZW22jHjtD3J9msui1b8gMsTzxhKXB5y88X54EHLOAUzgqHGRkWpCqsSPZzz1nKWkkryEk2u/HTTy1YtGGDFQfv1y/4QNH+hg2ztLWSVKxon+8nnXTgY0lJ1p//+ldoReMPdt77hPw59thjPQAAOHRJmu0TYMzBD+OvkJx1lveS91dc4f26dXZfdrb3F1/s/U03BbePnJzAf198sfflynm/bFlEmxqyHTu8r1PH+xNOOLCNpTVrlvePPRbZfYZq0CDv69b1ft++yO63d2/vO3SI7D4LmjrV+27dvN+wIbTnZWZ6f+SR3nfsGN5rOmmS91OmhP68kvTu7X27dpHfb3Fycry/7TZ7/95/f+HbjBljj48bF9q+X3/d+woVvF+zpvTt9N77FSu8v+QSa0udOt5/8EHo+7j8cu+rV/c+PT3/vqyskp+3YIH3SUne33pr6MfM06mT9z16BN63aZP35ct7P2RI+PstjcxM77duLd0+PvnEXpN3341Mm+Io2DEYM4wAAAAQWytW2CyWWbMKfzya396uXm2zK9LTg3/OokX5aRx/+YvV1Xj9dUs/keyb5zp1LG0or1h3cR5/3Gpy5M1ieOop+ya/YcNQ/pLIe+opqz/y9NORnw00aZLNlli2LLL7zRNMMd8bb7SZZiXV7hk3zooyB3OO7NplM8369w+uneGqUcPSOENNTcvIsL/50UcPfE1nzSq5EHCvXjZDLNIuvNBmEZbmve69zYTbfwbOlCk2K2rSpPyfX3+1x156SfrHP6z490MPFb7PAQNslkmodcmuuMLSuCJRc02y4uRvvWXFzlu1splBoUhPt0La55xjhaHzJCfbOZFXB6gwd95ps3vuuy+8tkuW/jZ9euAqlyNGWLtuuSX8/YbLe6vlVNwsI+/t/Nl/lcWCTjnFUttefjnybUxUwUSV4vHDN1wAABzaxAyjhPuJ2fhryxbvnfP+4YcPfGznTu8rV/Z++PDoHHvcOO8l7597Lrjtn3nG++Rk72++ufjt9uzxvkUL7xs39n779qK3++EH71NTvb/gguDbXBqvvur9Qw+VPLtk9WqbIXHhhdFpx7Jl1u9PPRXc9i+95P3ddwe3bXa297VqeX/ffeG3z3ub1XHOOdZOyfunny75OevX24yJb78t3bGDMWiQ9zVrer9rV2T216GD9126FP34J594/9VXkTlWpPTq5X2zZtYPycn2Ol11Vf7jKSn5r1/ezx/+YI9t2uT9I4/Y+VKcwYO9r1ev5O3ybNsW3t8SrHBmhuXkeD9vnvc//XTgY089Zf0yfXrhzxs71vs33wz9mPubP9+OMWJE/n0TJ3p/772l229pnHWW902bFv143mfUsGHF7+eRR2y7X36JbPtiLNgxWNwHJkX9EDACAODQRsAo8X5iOv7q1MnSUgr69FMfVkpIKE480VKTirvwzsnx/s9/tracfbZdbJZk2jRL5bj22sIfz8z0/thjva9d2/uNGw98/MMPve/bNzIpU3v32t9wzTX2N1x3nR2/KEOHep+WFt20uE6dLK2qJBMmWEBRslSskuRdnL7xRsnb5uRYcCcvnTDPyJGWLlOhgvePPmr/3r275P3F0rff+pCCnZ984v3nnxcdcHj6advfkiWFP965c+Hv0UjJyfF+7drQnnPFFZbCeeON9v588knvv/wy//Fvvsn/GT/efor6+4oyapQFo374oeRt9+2zIHGwwc1w7dhh7+H33ovMvurWteBbpFNP8+TkeH/EEd6ffnp09h+O556z872oz7jXXrPHS3rd1671/k9/ilz6YZwQMAIAAAmNgFHi/cR0/HX77RagKHhRfuutVs9nz57oHTvvwvvJJwt/PCvL++uv9/8LtART9yPPXXfZ7IfCas08/rjtc/Towp/78cf2+D/+EfzxinLttd736WOzJPICX2ecUXQQZOPG8OqkhOKxx6wdq1YVvc2mTd7Xr2+ztQ47zPvzzit5v88+a/tdsaLkbZcvt20fecQuavfutfvnz/f+/PO9/+23wO3T04u/qF60KPiZKJHQs6f3bduWfE5mZHjfpIkFfYpq/+rVFph74IEDH9uxw4KfRdX6iYR77/W+UqXAGjtFWbo0eu0oaM8emwUZjFGj7Hz66KPotikry/tWrbw/5piSz7edO+39v3Bh0du8+OKB7X77bZull5ERmTYPG+b988/b7WefDe79GU0LF9rf/MorhT9+1VX22R3L93McETACAAAJjYBR4v3EdPz1+efeS4GzA7y3Qrh9+0b/+AMH2sVBYelja9ZYSso994T+DXx6euGzJnbutADIuecW/dycHGtX1aqW6hSudessGDd0aP59L7xgwYHu3Q+8IIzWLIOCliyx1LGvvy56m+3bbRbJ3Lnez5hh/VaSc86x2QzB6tvXZoWccor3l15a9HYrVljB6HfeKfzxtWt9xAJ8wfrsM+//9S97zbKzi37tRoywtn3ySfH769fP/saC+/niC3t+ca9VaeUVEC74GVDQ/Pl27pY2TSrScnJsxmDLlrEJMowcaf314YfFb5cXxJo8ueht9u2zoOzRR9vMw927vW/QwPuuXSP/eTB7trXnmWciu99Q5eRYAfFLLin88WbNLG0tGNnZdt5OmlS69sRRsGMwil4DAAAg9k44QerY0Qqw5tm4UVqwIHrLk+/vkUeks84KPP6ePVJOjhWu/eEHK04davHncuWkww+3/Xz+ef79lStLs2cXX7TYOemf/7Siq/fcE9px9zdsmBUTvu22/PtuvNEK+Z55ZuCy319+KXXvLq1aFf7xgtWihRXBLWzJaskqzlStagXFO3aUuna1fsvJKXqf3luR4z59gm/HtddKK1daserOnW0fhWnYUKpeXfq//5O2bz/w8XHj7Hcoxy6tgQOloUPtXHnlFXsfzZkTuM2+fVbkumtX6dRTi9/fJZfY+27FisD7J0+WUlKkHj0i2vwAJ54olS9vS6cX5/777bw4/fTotaWgn36SeveW5s4tepvJk63vb7vNCt9H24UXWuHmRx4p+pyVpHfekRo0kI47ruhtUlOlJ56w99eGDdIzz0hr1kS+4P22bdLFF9txrroqcvsNh3PSc8/ZZ2FBq1dbQf5evYLf3w032AIKeYsXhGLFCitsftNNxX++JYJgokrx+GGGEQAAhzYxwyjhfuI+/tq0ydK2ikuliJbNm+3b9TvuiMz+8mZ4fPCB1cQI5dvkO++05y5aFPpxd+70vkYNq7tUnGnTvJ8509KbmjWLXBpKMHJyDqynNHeuFWAumHr04482g6Oo2RIZGZZeM2FC8MfPyrJ6RwXrGBVm1iyb3ZJXOHl/l15q9ajilcIyapTNmHDOalXlzUp7+WU7fz77rOR97N1bePrngAHB1ZsqrYEDvT/qqKIfnz7d/pZHH41+W/a3ebPVMfrzn4veZvBge/2jmT5b0L//Xfxru3WrFdW/7baS95WTYz/r19tCA8HOrgnFySdbe2+4IfL7jqTMTPtMDKUu0Ztv2t8WTF/vb88e7zt2tNdJsvduHD5Dgh2DxX1gUtRP3AcsAAAgqggYJd5PXMZf+/ZFpshzuGbO9P5vf/O+dWurnVRSukewMjLsouCww2y/jz0W/HN37LCVisJJWXjhBV9iseicHCtAnbfKVFE1laJh40arrfPii/n37dzpffPmlhKzeXPg9rt3W4HeE0+MXRsLuvlmq+cza1b+fTk5lrYYrVXlgrVtm9UDS031vkoVC4SNHGkBw1DOn7zgQZ6srNKlRQZr2DBfbOHtk06y99COHdFvS0H9+lmwsqh+3LrV+ylTYtumjAx7vZcvL/zxV1+1/pw5M/h9/v3vxb8GpfHZZ7bvxYsjv+9w5ORYmuW0aZHZ3803298XSrrkypXet2ljKZn332+fw6G8XhES7BiMlDQAAADEx6JFUs2a0ief2L+/+KLw1J9o+uc/pTvusJSsL76QBg2KzH7T0qQ33rC/p1Il6Zprgn9ulSqWOuacpReF4qqrpHffLT6VyDnp44+lDh0s/e/cc0M7Rmkcdpilw7z/fv59N98sLV0qvf22VKtW4PYVK0p33y1NmCBNmnTg/iZOlH77LapN1qOPSnXqSCNG5N+3cKG0fr3Uv390j12SatWkv/3N2tO7t1S7tnTppdKYMcGnFv36q9SmjZ3/eZKTpbp1o9Pm/Z19tqVQ1a9/4GOrV0szZ1p6ZpUq0W9LQeecIy1ZIv34Y+GP16ghHX98bNuUlmavd5MmhT++b5+lonXuHPw+09Ptc7BFi4g0McDAgVJ2ttSyZeT3Ha5rrrHUu/099pg0bVro+/rHPywl9brrpOXLg3tOo0bS/PnSaadJDz9sadhduoR+7BghYAQAAID4aN7c6jd8843VdBg40IIssfTYYxYkmjAh8rVojjnG6hh99VV4F99vvmkXWtu2Bf+cChWCCwDVry/NmmU1jCJZs6QkzkmDB1t/b9kivfWWveb3328Bj8Jcf73VhXrwwcD7vbe6LvfeG902V6smffut9OKL+fcdeaQFOmNZV6c4LVpYEHDgwNCf27ixBb/eesv+PXx47Gqr1K8vXXCB1bgpqGFDuwi/4Ybot6MwZ59t5+uYMYH3b9pkQZkZM+LTLsneu4XVObv+ejtXQ3lP//nP0h//GLm2FRSL+k7Bck7q29c+f/LO7w0bpPvuk6ZMCX1/qakWoH/xxaKDeHmmTJGuvNJq5aWk5N/furX9fv996YorwquJFEUJ9OoBAACgTElLsyKj48db0EiKTcHr/TVpIn34oXTssdHZf79+4e+7TRubZTFokF1kFMd76fzzpdGjg9+/czaTJNYGD7ZZB2PHWnDihBPsgq0oFSrYLKNJkwIv6n7+2S72igo0RdKRR9qF78aN9lOxos0QqFMn+seOtrQ0O3c+/FDatcvOoe++i92Ffl6x5V278u/buNHO6Zo17fWPh8MPtwLJzZsH3v+vf1nB9GrV4tMuyV6fJ54IfD9s2JD4BZQTQd++0tatNrNHyu/DUApe7++ww2xmp3M2I23/hRTyrFljgfxp02xBgsIsW2ZfElx6aUIFjQgYAQAAIH769bMViUaOlOrVy/+2FRZoGjnSLmjOPrvwC5E8EyfaN92hzEaKl2OPtRWCxoyx2Vfvvx/4jXthhgyx1KWePfPvy0tRi0XASLLV69q3tyDCI49YKteh4pJLLCj53nt2URvuxXM4fvnF0kLzVp3z3lZ3i2WqZFGGDbNZbHn27rX7Tj9datUqfu0aMsTSDx99NP++886TBgyIX5sOFieeaL/Hj7ffkyZZ2nBpvzRYv95SAf/wh8BV7DIyLEi+Z4/0wQdFBxrvuMPSDf/7X+mii4oOLMUYASMAAADET9++9nvSJAsexTI96mBw4YXSv/9tgZULLrCZOYV5+mmb7XL55bFtXzickx5/3NJnype3C9+SlC9vf//+M6ImTbIgY8EZINFSoYItaf/++9IDDxRd2+ZgdNxxFsT705/swjaWAaPjjpOqVpU++8z+/eGHtlz9GWfErg3F+f13q7cmWQB382brp3iqWNHa8NVXVudp9WoLLMcqeHowa9jQUjinTrV/T5pkgejU1NLtt1496ZZbrNbZSy/l33/LLZa++PrrJX8hcvvtVhfpvfeK/7yPoRJC+QAAAEAUdehg34y/+27s09EOFldfbRfx27cXnkK2aJFdbD/8sAVWDgYXXxze80aMsNpBH35oF3q9e8c2yHjXXVace9myyNe8iqekJJut8uyzlq5zwgmxO3ZqqnTyyXYOZ2dbPauWLS01JxHk1YWaOlX6+9+lTp0SIzBz443SU0/Z65Z3Ll5wQVybdND4+murn7V3r6U/nn9+ZPb7yCPS999bkKh1a0tlHT3aUmoHDw5uH7feap/zRX3exxgBIwAAAMRPUpJNwX/wwcJXSoK5+eb827/9ZoWK8wIlTz9tMw5uvDE+bYulrCzpo4/sgm/mzJJrO0Va+fKWSrdokc2KOZRceqldPFerFpsV0vZ36qk2q+Kee6xv33mn5DTFWDnzTCusvnKldOed9jmVCDMhq1SxmW47dkijRllKVaxm2x3sGje23ykp0rp1oa9GWZSkJAsod+tmKZVz51oAqUGD0PZzyy2RaU8EOL9/fl0C6dy5s589e3a8mwEAAKLEOTfHex/C2r+INsZfB4FVq6yOzuWXS888YxeuY8daECmBLjKiJiPDLoobNLAZH4lw4Y7SW7/eLuIzM6V27aR58xJnda0lS6xe0XPPWX2aRPPrr/ae+NvfLKUJJcvJsZk87dpJ11wT+f0vWSK9/LIVJk9Li/z+IyDYMViCvAsBAAAAlKhhQ1t6+dlnLXVHslXUykKwSJLKlbMV1aZPDyxGjINbvXqWCpeRYemGiRIskiw9TrL3WKxntAXjiCMsne+SS+LdkoNHUpKltF57rQXaIq1lS6tFlKDBolAk0DsRAAAAQLGcswuRa6+VHnvMVvfZvDnerYqtK6+03zt3xrUZiLDKle0Cu2nTeLfkQI88Yr8TZOWqAKmpVmfp8MPj3ZKDS96qaGXt8zNEBIwAAACAg4lztgrPWWfZjIfly+PdothKS5O2bbPVyoBYuPdeKT296CXRcfDp399+J0IB8wSWIJXEAAAAAAQtOdkCJmvWSI0axbs1sceFO2LJOUuHxKHjwgutHtzRR8e7JQmNGUYAAADAwSgpqWwGiwAgEggWlYiAEQAAAAAAAAIQMAIAAAAAAEAAAkYAAAAAAAAIQMAIAAAAAAAAAQgYAQAAAAAAIAABIwAAAAAAAAQgYAQAAAAAAIAAMQ0YOedecc5Nc87dF8vjAgAAlGWMwQAAQKhiFjByzp0jKdl730NSM+dc81gdGwAAoKxiDAYAAMIRyxlGfSSNzr39laTjY3hsAACAsqqPGIMBAIAQpcTwWJUkrcm9vVVSp4IbOOeGSBqS+89dzrklUWpLY0kro7Tv0qomaXu8G1EE+i089Ft46Lfw0G/hSeR+kxK77w6TtDnM5x4RyYagSMWOwRh/SUrs95hE34WLfgsP/RYe+i089Ft4SjP+koIcg8UyYLRLUoXc25VVyOwm7/1wScOj3RDn3CbvfedoHycczrnh3vshJW8Ze/RbeOi38NBv4aHfwpPI/SYlfN/NTuS+g6QSxmCMvxL7PSbRd+Gi38JDv4WHfgsP/RaeWI2/YpmSNkf5U6DbS1oRw2MXtC2Oxy7Jx/FuQDHot/DQb+Gh38JDv4UnkftNSuy+Q+JLlDFYIr/PEv09Rt+Fh34LD/0WHvotPPRbAovlDKMPJU1xztWXNFBS9xgeu6BEnVYm730in5T0W3jot/DQb+Gh38KTsP0mJXzfIfElyhgsYd9nB8F7jL4LD/0WHvotPPRbeOi3BBazGUbe+x2yoovTJZ3ovY/niRH1adeHKPotPPRbeOi38NBv4aHfwkffJbgEGoNxroSPvgsP/RYe+i089Ft46LfwxKTfnPc+FscBAAAAAADAQSKWNYwAAAAAAABwECBgBCBhOOdqOuf6O+cOi3dbAAAAygLGXwCKUuYCRs65V5xz05xz98W7LQcD51xd59yU3NupzrmPnXPfOeeujnfbEpFzrppz7nPn3FfOuQ+cc2mcc8FxztWQ9ImkrpImOOdq03fByX2fzsu9TZ8FwTmX4pxb6ZybmPtzjHPuIefcLOfcC/FuX6Jzzv3LOXdG7m3OOZSI8yQ0jL9CxxgsPIy/SocxWGgYf5VerMdgZSpg5Jw7R1Ky976HpGbOuebxblMiy/0P5A1JlXLv+oOkOd774ySd65yrErfGJa5LJP3De3+ypPWSLhTnXLDaSbrNe/+YpC8l9RV9F6ynJVXgMy4k7ST9x3vfx3vfR1KabNnxrpI2OudOimfjEplz7gRJ9bz3H3POIRicJ6Fh/BU2xmDhYfxVOozBQsP4qxTiMQYrUwEj2Qoho3NvfyU7OVG0bEkXSNqR++8+yu+/yZI6x6FNCc17/y/v/de5/6wt6VJxzgXFez/Jez/dOddL9p/GANF3JXLO9ZW0WzY47iP6LFjdJZ3unJvpnHtFUj9J73tbCeJLSSfEtXUJyjmXKmmEpBXOuUHinENw+ojzJBSMv8LAGCw8jL/CxxgsLIy/whSvMVhZCxhVkrQm9/ZWSXXj2JaE573fUWDpXfovSM65HpJqSFol+ixozjknGyT/LsmLviuWcy5N0v2S7s69i/do8GZJOsl731VSqqQKou+CcbmkHyU9JbuwuEn0G0rGZ1MIGH+VDmOw0DH+Ch1jsLAx/gpfXMZgZS1gtEt2UkpSZZW9v7+06L8gOOdqSnpe0tWiz0LizU2SFkjqKfquJHdL+pf3flvuvznfgrfAe78u9/Zs0XfB6ihpuPd+vaS3ZLMd6DeUhPdX6dB/QWIMFh7GX2FhDBYexl/hi8sYrKy9IHOUP1WrvaQV8WvKQYn+K0Hutw3vSrrHe/+b6LOgOefucs5dnvvP6pKeEH1XkpMk3eScmyipg6QzRJ8Fa6Rzrr1zLlnSWbJvBum7kv0qqVnu7c6Smoh+Q8n4v7B06L8gMAYLD+OvsDEGCw/jr/DFZQzmLF2wbHDOVZU0RdI3kgZK6l5gyi8K4Zyb6L3v45w7QtJnksbJvn3o7r3Pjm/rEotz7gZJj0v6Pveu1yTdJs65EuUW+RwtqZykhZLukUXO6bsg5A5YzhSfcUFxzrWVNEqSk/SRbFr5FNm3XadIOsV7vzx+LUxMucV2X5VNe06VFZX9SJxzKAbjr/Aw/goNY7DwMP4qPcZgwWP8Fb54jcHKVMBI+t+HYn9Jk3OncyEEzrn6skjml3wIBodzLnz0Xejos/A55ypIOk3SXO/9sni352DBOYdgcJ6UDuOv8HDehYd+Cw/9Fh7GX+GLxTlX5gJGAAAAAAAAKF5Zq2EEAAAAAACAEhAwAgAAAAAAQAACRgDizjlXyzl3Ue7tVOeci3ebAAAADmWMvwCUhBpGAOLCOfdHSRne+5ecc+Uk/SxbkvQeWfX/nNxNj5XUhCKfAAAApcP4C0AoUuLdAACHLudcb9nSmb9IauW9r7ffw1mSMp1zyZJqypa+Xe+9v6jAPiZK2pd7+xVJrSV96r1/NPp/AQAAwMElCuOvupLe896fEIPmA0ggBIwARFOWpA+89zc752Y5566W1Db3/vayb7GyJA3x3h/nnPsydwCT55Tc3945d46kZO99D+fcq8655t77X2L5xwAAABwEIjn+qiHpDUmVYth+AAmCgBGAaMqWdLZzrq2kOt77V51zjbz3q5xzQyWlS/qvpKtyt0/x3veT7Jst733Wfun0fSSNzr39laTjZd+cAQAAIF8kx1/Zki6QNDa2fwKAREDRawDRlC37hquPpHXOuQqSPnbOVSti+1bOuXHOuXGyb8D2V0nSmtzbW2V59gAAAAgUsfGX934HdYyAsosZRgCiaf+gtPPe73XOvSCpcxHb/+S9P0n6X+78/nZJqpB7u7IIeAMAABQmkuMvAGUYASMA0ZSi/CnRDSTJez9CkpxzzQvZvkPut1uS1N45t/9n1BxZGtp02bdfS6LWagAAgINXJMdfAMowPgwARFOy8osuPljgsbzk+KS82977wwruwDmXJivO+KGkKc65+pIGSuoetVYDAAAcvCI5/gJQhpHSASCaZkt6RJK89w/l3emcO0/SLbKi1ZUllSvsyc65t2WFGPd573fICl9Pl3Qi+fQAAACFitj4K+++3HpIAMoY572PdxsAlDG5xRdzvPcZJWxXxXu/M0bNAgAAOGQx/gIQKgJGAAAAAAAACEBKGgAAAAAAAAIQMAIAAAAAAEAAAkYAAAAAAAAIQMAIAAAAAAAAAQgYAQAAAAAAIMD/AzNsijQUwQ/8AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1440x576 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# 多个坐标系显示 子图\n", "\n", "# 生成 fig 1行 2列\n", "fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(20, 8))\n", "\n", "\n", "# 准备数据\n", "x = range(60)\n", "# 准备上海的数据\n", "y_上海 = [random.uniform(15, 18) for i in x]\n", "# 准备北京的数据\n", "y_北京 = [random.uniform(1, 4) for i in x]\n", "\n", "# 构建中文坐标标签\n", "x_ch = ['11点{}分'.format(i) for i in x]\n", "y_tickets = range(40)\n", "\n", "# 画折线图\n", "ax[0].plot(x, y_上海, label='上海')\n", "ax[1].plot(x, y_北京, label='北京', color='r', linestyle='--')\n", "\n", "# plot 后再修改刻度\n", "# 修改x y刻度\n", "ax[0].set_xticks(x[::5], x_ch[::5])\n", "ax[1].set_xticks(x[::5], x_ch[::5])\n", "ax[0].set_yticks(y_tickets[::5])\n", "ax[1].set_yticks(y_tickets[::5])\n", "\n", "# 增加 x y 轴 描述\n", "ax[0].set_xlabel('时间0')\n", "ax[0].set_ylabel('温度0')\n", "ax[1].set_xlabel('时间1')\n", "ax[1].set_ylabel('温度1')\n", "\n", "ax[0].set_title('子图0的标题')\n", "ax[1].set_title('子图1的标题')\n", "\n", "# 添加图例\n", "ax[0].legend(loc='best')\n", "ax[1].legend(loc='best')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 柱状图\n", "以电影票房统计为例" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "# 生成电影名及随机票房\n", "电影序列 = list(range(5))\n", "电影名称 = ['电影{}'.format(i+1) for i in 电影序列]\n", "电影票房1 = [random.uniform(100, 1000) for i in 电影序列]\n", "电影票房1 = [int(i) for i in 电影票房1]\n", "电影票房2 = [random.uniform(100, 1000) for i in 电影序列]\n", "电影票房2 = [int(i) for i in 电影票房2]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHVCAYAAAAzabX0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE/VJREFUeJzt3W+Mped51/HfhdeG1bpKbXnYyhLgWvILisjGYTE2OGFjbFSTprTmjwOFSjSREVjlRd+kUVyFpBRQVAWiCkdaYiBt1cC2VYtbCnGDcGMiu8qsipoIqQSBTWUSZSo7Ng5/SsPFi3NSj2dnd6bea3bO7Pl8pJGfuZ9znrmP7jmz33nOM8fV3QEA4PL9rsOeAADA1UJYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAw5dhhf9KabbupbbrnlML40AMDvyPnz53+juzf2c9tDCatbbrklm5ubh/GlAQB+R6rquf3e1kuBAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMCQY4c9AdZbfaAOewpXnX5/H/YUANaWM1YAAEOEFQDAEGEFADDENVbA3sq1cOPatXBwNXLGCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIbsO6yq6tGqesdy+7GqerqqHtm2/4IxAIB1sq+wqqq3JPmm7v65qnogyTXdfVeSW6vqtt3GDnDOAAArac+wqqprk/zjJM9W1Z9NcibJueXuJ5LcfZExAIC1sp8zVt+d5D8m+VCSO5I8nOT55b4XkpxMcmKXsdeoqoeqarOqNre2ti533gAAK2c/YXV7krPd/aUkP57k00mOL/ddvzzGK7uMvUZ3n+3u0919emNj47InDgCwavYTVv85ya3L7dNJbsmrL/WdSvJskvO7jAEArJVj+7jNY0n+SVW9M8m1WVxP9XhV3Zzk/iR3JukkT+0YAwBYK3uGVXf/jyR/YftYVZ1Jcl+SD3X3SxcbAwBYJ/s5Y3WB7n4xr/4V4EXHAADWiXdeBwAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABjyut55HYDVUx+ow57CVaXf34c9BY4gZ6wAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABhy7LAnAABro+qwZ3D16T7sGbyGM1YAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMCQS4ZVVR2rqv9WVU8uP/5wVX2gqj5bVf9o2+0uGAMAWDd7nbF6Y5JPdPeZ7j6T5Lokdye5I8mXq+reqvojO8cOcsIAAKvq2B7770zybVX1tiSfS/JrSX66u7uqPpnk/iQv7TL2qYOcNADAKtrrjNVnk9zb3XckuTbJ8STPL/e9kORkkhO7jF2gqh6qqs2q2tza2rrsiQMArJq9wupXu/uLy+3NJK9kEVdJcv3y/ruNXaC7z3b36e4+vbGxcXmzBgBYQXuF1Y9V1amquibJd2Rxduru5b5TSZ5Ncn6XMQCAtbPXNVYfTPITSSrJ40n+TpKnquojSb51+fFckr+3YwwAYO1cMqy6+/NZ/GXgb1v+1d/bk3yku//rxcYAANbNXmesLtDd/yvJT+01BgCwbrzzOgDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwZF9hVVUnq+pXltuPVdXTVfXItv0XjAEArJv9nrH64STHq+qBJNd0911Jbq2q23YbO6jJAgCssj3DqqruSfLVJF9KcibJueWuJ5LcfZExAIC1c8mwqqrrkvxAku9fDp1I8vxy+4UkJy8yttuxHqqqzara3Nrautx5AwCsnL3OWH1/kke7+yvLz19Jcny5ff3y/ruNXaC7z3b36e4+vbGxcXmzBgBYQXuF1b1JHq6qJ5O8Kck78upLfaeSPJvk/C5jAABr59ildnb3W7++vYyrb0/yVFXdnOT+JHcm6V3GAADWzr7fx6q7z3T3y1lcrP5Mkrd190u7jR3ERAEAVt0lz1jtprtfzKt/BXjRMQCAdeOd1wEAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIbsK6yq6saquq+qbjroCQEAHFV7hlVV3ZDk55PckeTfVdVGVT1WVU9X1SPbbnfBGADAOtnPGas3Jvm+7v6hJJ9Mck+Sa7r7riS3VtVtVfXAzrGDmzIAwGo6ttcNuvuXkqSq3prFWasbk5xb7n4iyd1Jbt9l7AvTkwUAWGX7vcaqkjyY5MUkneT55a4XkpxMcmKXsZ3HeKiqNqtqc2tr63LnDQCwcvYVVr3wcJJfTfLHkxxf7rp+eYxXdhnbeYyz3X26u09vbGxc9sQBAFbNfi5ef09Vfffy029M8vezeKkvSU4leTbJ+V3GAADWyp7XWCU5m+RcVb07yeeT/GyST1fVzUnuT3JnFi8PPrVjDABgrezn4vUXk9y3fayqzizHPtTdL11sDABgneznjNUFlrF1bq8xAIB14n9pAwAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ44d9gQOVNVhz+Dq0n3YMwCAleaMFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAkD3DqqreUFX/uqqeqKqfqarrquqxqnq6qh7ZdrsLxgAA1sl+zlh9V5IPd/efTvKlJO9Mck1335Xk1qq6raoe2Dl2cFMGAFhNx/a6QXc/uu3TjSR/Jck/XH7+RJK7k9ye5NyOsS/MTRMAYPXt+xqrqroryQ1Jfj3J88vhF5KcTHJil7Gd93+oqjaranNra+uyJg0AsIr2FVZVdWOSH0nyPUleSXJ8uev65TF2G3uN7j7b3ae7+/TGxsblzhsAYOXs5+L165L8ZJL3dvdzSc5n8VJfkpxK8uxFxgAA1sqe11gleVeSNyd5X1W9L8k/TfJXq+rmJPcnuTNJJ3lqxxgAwFrZz8XrH03y0e1jVfV4kvuSfKi7X1qOndk5BgCwTvZzxuoC3f1iXv0rwIuOAQCsE++8DgAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAMEVYAAEOEFQDAEGEFADBEWAEADBFWAABDhBUAwBBhBQAwRFgBAAwRVgAAQ4QVAMAQYQUAMERYAQAM2VdYVdXJqnpquX1tVf1cVX2mqr7nYmMAAOtmz7CqqhuSfDzJieXQ9yY5391/Ismfr6pvuMgYAMBa2c8Zq68leTDJy8vPzyQ5t9z+dJLTFxkDAFgre4ZVd7/c3S9tGzqR5Pnl9gtJTl5k7DWq6qGq2qyqza2trcubNQDACno9F6+/kuT4cvv65TF2G3uN7j7b3ae7+/TGxsbrmSsAwEp7PWF1Psndy+1TSZ69yBgAwFo59jru8/Ekv1BVb0nyLUl+OYuXAXeOAQCslX2fseruM8v/PpfkviSfSXJvd39tt7EDmCsAwEp7PWes0t3/Pa/+FeBFxwAA1ol3XgcAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhggrAIAhwgoAYIiwAgAYIqwAAIYIKwCAIcIKAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABgirAAAhoyGVVU9VlVPV9Ujk8cFADgKxsKqqh5Ick1335Xk1qq6berYAABHweQZqzNJzi23n0hy9+CxAQBW3rHBY51I8vxy+4Ukb96+s6oeSvLQ8tNXqurXBr/2UXdTkt847EnsqeqwZ3DYjsQ61d9e63U6EmuUZN2fT0dindb8uZQckXW6Qs+lP7DfG06G1StJji+3r8+Os2HdfTbJ2cGvd9Woqs3uPn3Y8+DSrNPqs0ZHg3U6GqzT6zP5UuD5vPry36kkzw4eGwBg5U2esfrZJE9V1c1J7k9y5+CxAQBW3tgZq+5+OYsL2J9J8rbufmnq2GvAS6RHg3VafdboaLBOR4N1eh2quw97DgAAVwXvvL7CquobDnsOXJo1Ohqs09FgnVafNdqbsLoCquo/XGLfL1bVk8uPX66qjyzH35HkE1dskmvOGh0NE+tUVTdW1X1VddMVmPJa8nxafdbo4ExevM42VfVvk1yz/PTWqnpy2+63d/dXl9v/b8ddf7Oq3pTk3Un+8rbjnUzyU939lgOa8tqZXKOqekOSf7483leTPNjdv3lQc18nw+t0Q5KfT/Kvkny4qu7p7q0Dm/wamf6ZtzzmyST/prtvP4Apr53h59KxJP9l+ZEk39vdnzuQiR8xwurg3Nrd35wkVfVMd59Zbj+Z137T/kKSTvJHk/xKFm+y+ieTfFeSe6rqqeXtPp7Fm7AyZ3KN/lKSD3f3L1bVR5N8a5LHr9DjuNpNrtMbk3xfdz+zjKw3J/nkFXocV7uxderuF5e3/eG8+v6IXL7J59I3J/lEd7/nis3+iBBWB+cNVfWp5fYf3LZ9Kotv2FTVu5L8mST/N8kfS3JDkmuT/IMkp5M8kMVv1ieSPJjkX16x2a+HsTXq7ke3HXcjyZcPfvprY3Kdfml5+7cmuSPJB6/Ug1gDkz/zUlX3ZHH290tX6gGsgck1ujPJt1XV25J8Lslf7+7fulIPZJUJq4PzQnffm/z2bwZf337y6zfo7seq6vcl+d9J/n2S353FbwbflMUP/Xd199eSvLy87xV9AGtgco2yvO9dSW7o7meu2KO4+o2uUy2eSA8meTGLfzyYMbZOVXVdkh9I8p1ZvEciMybX6LNJ7u3uL1bVj2YRY87SR1gdpEtV0PY/Grgri2/cZHHK+zNJPtbd/6yq/lpVHd9xNoQ5o2tUVTcm+ZEkf+5gpru2RtepF+8x83BV/WCSb0/yLw5k1utnbJ2y+H/UPdrdX/EL5ajJNXqsu//P8jabSW4bn+0RJawOzu/d9lvAt+y4SHD7N/cPJvlCFi/zvTfJ57v7y1X1zix+6D94Bea6rsbWaPkb9k8meW93P3fgM18vk+v0niRf7O4fTfKNSb5y0JNfI5M/8z6VxbU8Dyd5U1V9rLvffdAPYA1MrtGPV9UPJfl8ku9I8ncPeO5HhrA6OCe7+38myfKU6Z/a9lLE36yql5L8pyR/K8n7k/yeJFtJHqiqP5TFbwt/sbu9VHFwxtaoqv5GFhdCv6+q3pfko93tTMiMyXU6m+RcVb07i38QnrjyD+eqNfkz761fP2hVPSmqxkw+lz6Y5CeyCLLHu/tTF3659eSd16+AqvpYktuzuKajkvz+JG9P8utJfivJO5J0d/9MVb09yYnuPndY811H1uhosE5Hg3Vafdbo4AgrAIAh3nkdAGCIsAIAGCKsAACGCCsAgCHCCgBgiLACABjy/wGjjRZGt9pD0gAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 720x576 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,8))\n", "x = range(len(电影名称))\n", "y = 电影票房1\n", "\n", "plt.bar(x, y, width=0.8, color=['r','g','r','g','r'])\n", "# 修改刻度 显示电影米杆子\n", "plt.xticks(x, 电影名称)\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHVCAYAAAAzabX0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHndJREFUeJzt3X+w3WVh5/HPkx+QmGgMJCSlIQQGtXEHCDWiKCUBQ/2B6XazIqwodkvKhs3UP9IZwSLjj9pdB4haAWGQdG0FuxtkYC2ghThQ0ILTZGBpRoIyGmikkVsIUX4keJNn/7gnl9zkhlzIc5N7ua/XTMZznvM93/uc+02ub57zPd9baq0BAGDfjTrQEwAAeK0QVgAAjQgrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjYw5EF90ypQpddasWQfiSwMAvCJr1qz591rr1IFse0DCatasWVm9evWB+NIAAK9IKeWxgW7rrUAAgEaEFQBAI8IKAKCRA3KOFTC8/eY3v8mGDRuyZcuWAz2VIW/cuHGZMWNGxo4de6CnAuwHwgp4xTZs2JDXv/71mTVrVkopB3o6Q1atNU899VQ2bNiQo4466kBPB9gPvBUIvGJbtmzJoYceKqr2opSSQw891MoejCDCCnhVhkpUbdmypU+4dHV1veJ91FpTa93j49u2bev38e7u7mzevPll9z1Uvk/A/iGsgGHtrrvuygUXXNB7/8Mf/nAee6zvJWcmTJiQk08+uc+fI488MldffXWS5L777su8efMyf/78zJo1K29729ty1FFHZc6cOZk/f37mzZuXBx98cLevfdNNN+Vzn/vc4L5AYFhxjhWwz2ZddFvT/a3/4hl73ebhhx/OXXfdlVGjRuWJJ57I1VdfnWeeeSbPPfdcvvvd72b79u059dRTM3v27Bx55JH5wQ9+0Of5X/jCFzJmTM+PwHe9610599xz8+ijj6a7uzvHHHNMfvazn2XGjBmZOXNm5syZkxNOOCFJsmLFiixfvjyHH354774WLFiQ7du35w1veENuueWWht8JYLgRVsCwNHny5Bx77LEZO3Zs5syZk0996lNZunRpvvrVrybpeftu8uTJSZLRo0f3u4+dx2+66aZcc8016e7uzumnn5677rorJ554Yo444ohceeWVOfvss5MkY8aMybJly7J48eI++9qyZUvOOeecwXipwDAirIBhafr06Zk+fXrOPPPMdHV15cEHH8yVV16ZJPnt3/7t3HDDDb3bPvHEE5k/f36f5z/22GP5zGc+03v/2GOPzXnnnZckvW/77fjVW+95z3t6txs1alQuu+yyXH/99UmSjRs3Zvr06UmSd7/73Y1fJTDcCCtgWNu4cWO+/OUv9xn7sz/7sz73jzjiiNx99919xr7whS/0uX/qqadm2rRpu61ubdu2LW9/+9t77+9Y0VqwYEGS5BOf+EQWL16ciRMnpru7O48++miOOeaYfX1ZwDAlrIBhrbu7O/fff3+fsW3btvW5/3Kf+EuSq666KrfffnvvJ/h2PH9HZK1atSqrV6/OsmXLsmnTpsycOTNTpkzJkiVLcsMNN/R53vjx45u8LmB4ElbAsPb888/n29/+dp+xrVu39rm/p7Davn17kmTp0qVZunRpvvGNb2TRokVZuXJlkuTMM8/MPffck4ULF/Y+Z82aNbn44ovz5je/Oc8//3wuueSSJMkzzzyT0047LV/60peavTZg+BFWwLA2ZcqUfP/73+8ztvM5UUnP+VT9nWP153/+50l6riS/ZMmSzJkzJ1u3bs3jjz+eWbNmZevWrbntttty6aWX5sYbb8whhxySdevWZfbs2bnqqqvy8Y9/vPc8rW9+85t59tlnB++FAsOCsAL22UAujzBYNmzY0Hu+0w67XiR02rRp/Z5j1d3dnSQ5/PDDs3z58rzlLW/JunXrsnHjxlxwwQU57LDDcs011+QnP/lJpk+fnptvvjmLFi3K5ZdfnrVr1+a6665LrTWLFi3KI488kltvvXVQXysw9JW9nXswGObOnVt3fNoGGH4efvjhzJ49+0BP44DYvn17nnzyyd5PAibJc889lwkTJuzxOSP5+wWvBaWUNbXWuQPZ1pXXAV6BUaNG9YmqJC8bVcDI4q1AhqzWV/Pe2YF86wqA1y4rVgAAjQgrAIBGhBUwojz33HO7jdVaX/Yiotu2bev38e7u7mzevLnp/IDhzTlWwL777KSmu3to8WN73ea4GW/M17/+9XzlK1/Jb/3Wb+32+AsvvJAf/vCH+fWvf533vve9+ad/+qckyYc//OFcdtlleetb39q77X333ZeLLrooo0aNyvr163PooYfm6aefzqRJk/LGN74x3d3dueKKK3LCCSf0+Ro33XRTfvSjH7koKNBLWAHD1sEHH5wLL7ww55xzTlatWpUHH3wwn/zkJ1NKybx585IkY8eOzUEHHZSkZ7XqgQceyLe+9a3effzJn/xJ3vWud+Xcc8/No48+mu7u7hxzzDH52c9+lhkzZmTmzJmZM2dOb1StWLEiy5cvz+GHH967jwULFmT79u15wxvekFtuuWU/fgeAoUZYAcPWqFE9ZzOcddZZWbduXV544YXccsstufPOO1NKyfe+97187nOfy49//OPMmzcvH/nIR7Js2bJ86EMfSpJccskl2bhxY4488sjcdNNNueaaa3p/yfJdd92VE088MUcccUSuvPLKnH322UmSMWPGZNmyZVm8eHGfuWzZsiXnnHPO/v0GAEOOsAKGre3bt+fpp5/OwoULM3v27Pz85z/Pe9/73qxduzZJcvrpp+eUU07JBz7wgdx+++055ZRTsmTJkqxduzYf/OAHc/DBB/f+0uRjjz025513XpLkwQcfTJLsuJDxzr8iZ9SoUbnsssty/fXXJ0k2btzYe12rd7/73fvnhQNDlrAChq1f/vKXmTRpUiZOnJh3vOMdecc73pFt27bl4IMPTpKMHj26d1Xrda97Xe68886MHz8+n/zkJzNv3rz85je/ybhx45Ikp556aqZNm5bRo0f3+Rrbtm3L29/+9t77O1a0dvwanU984hNZvHhxJk6cmO7u7jz66KM55phj9sfLB4YgYQUMW4899lg+9rGP5cILL8yYMWN6x37605/utu2LL76YyZMnZ/v27TnssMOyfPnyvPjiixk/fnyuuuqq3H777SmlJOmJqSS9kbVq1aqsXr06y5Yty6ZNmzJz5sxMmTIlS5YsyQ033NDneTtWwICRSVgBw9YjjzyS3/md38mYMWOyatWqJMn8+fN7H9+wYUPuuOOOPPTQQzn77LPz+c9/PhdccEHOO++8/NEf/VE+9KEPZdy4cVm6dGmWLl2ab3zjG1m0aFFWrlyZJDnzzDNzzz33ZOHChb37XLNmTS6++OK8+c1vzvPPP59LLrkkSfLMM8/ktNNO8wlBGOGEFbDvPtv/tZwe2vDMoH3Jrq6ubNq0KZMmTcpxxx3X+9bctGnTkiSllDzwwAN54okn8tBDD2XGjBl5/PHHc8UVV2TOnDmptaarqysTJkzIhg0bsmTJksyZMydbt27N448/nlmzZmXr1q257bbbcumll+bGG2/MIYccknXr1mX27Nm56qqr8vGPfzyf+cxnkiTf/OY38+yzzw7a6wWGB2EFDEurV6/ORz/60STps0p06623Zs6cOVm4cGHvnx1mzpyZmTNnZs2aNVm4cGHe97735XWve13GjRuX5cuX5y1veUvWrVuXjRs35oILLshhhx2Wa665Jj/5yU8yffr03HzzzVm0aFEuv/zyrF27Ntddd11qrVm0aFEeeeSR3Hrrrfv9+wAMLeXlrjY8WObOnVt3fNoG9sQvYR66Hn744cyePXuv2w3mitVxM96YWmvv+U079DfW0vbt2/Pkk0/2fhIw6bk+1oQJE/b4nIF+v4ChqZSyptY6dyDb+pU2wLDVX0ANZlQlPZdb2DmqkrxsVAEji7ACXpUDsdo9HPk+wcgirIBXbNy4cXnqqadEw17UWvPUU0/1XisLeO1z8jrwis2YMSMbNmxIV1fXy273y00vDNocHv718Lhe1Lhx4zJjxowDPQ1gPxFWwCs2duzYHHXUUXvd7v0+gACMMN4KBABoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoZMBhVUr5WillYef2ilLKfaWUT+/0+G5jAAAjyYDCqpTye0mm11r/vpSyKMnoWutJSY4upbypv7FBnDMAwJC017AqpYxN8vUk60sp/zHJ/CQrOw/fkeTkPYwBAIwoA1mxOjfJj5NcmuTEJEuT/KLz2NNJpiWZ0M9YH6WU80spq0spq7u6uvZ13gAAQ85AwuqEJNfWWjcmuT7JPUnGdx6b2NnHs/2M9VFrvbbWOrfWOnfq1Kn7PHEAgKFmIGH1aJKjO7fnJpmVl97qOz7J+iRr+hkDABhRxgxgmxVJ/rqUcnaSsek5n+o7pZTDk7w/yTuT1CT37jIGADCi7DWsaq2/TnLmzmOllPlJTk9yaa11857GAABGkoGsWO2m1ropL30KcI9jAAAjiSuvAwA0IqwAABoRVgAAjQgrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA08qquvA7AyDDrotsGZb/rv3jGoOwXDjQrVgAAjQgrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjQgrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjQgrAIBGhBUAQCPCCgCgkTEHegIAwOCZddFtg7Lf9V88Y1D2O9xZsQIAaERYAQA0IqwAABoRVgAAjQgrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjQgrAIBGxhzoCQDAXn120iDtd/Pg7JcRy4oVAEAjwgoAoBFhBQDQiLACAGhEWAEANOJTgQDA4BqsT3UmQ+6TnVasAAAaEVYAAI28bFiVUsaUUh4vpdzd+XNsKeVzpZR/LqVctdN2u40BAIw0e1uxOi7J39Va59da5yc5KMnJSU5M8mQpZUEp5W27jg3mhAEAhqq9nbz+ziQfLKWcmuRfkjyS5KZaay2l/EOS9yfZ3M/YqsGcNADAULS3Fat/TrKg1npikrFJxif5Reexp5NMSzKhn7HdlFLOL6WsLqWs7urq2ueJAwAMNXsLq4dqrf/Wub06ybPpiaskmdh5fn9ju6m1XltrnVtrnTt16tR9mzUAwBC0t7D6Zinl+FLK6CR/mJ7VqZM7jx2fZH2SNf2MAQCMOHs7x+rzSb6VpCT5TpIvJLm3lPJXSd7X+fNYkv+5yxgAwIjzsmFVa12bnk8G9up86u+MJH9Va/35nsYAAEaaV/wrbWqtLyT59t7GAABGGldeBwBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEbGHOgJjAifnTRI+908OPsFAF4VK1YAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAacYFQ4LVvsC7Sm7hQL9CHFSsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhlQWJVSppVSHujcXlFKua+U8umdHt9tDABgpBnoitXlScaXUhYlGV1rPSnJ0aWUN/U3NliTBQAYyvYaVqWU05I8l2RjkvlJVnYeuiPJyXsYAwAYcV42rEopByW5JMlFnaEJSX7Ruf10kml7GOtvX+eXUlaXUlZ3dXXt67wBAIacva1YXZTka7XWZzr3n00yvnN7Yuf5/Y3tptZ6ba11bq117tSpU/dt1gAAQ9DewmpBkqWllLuTzEmyMC+91Xd8kvVJ1vQzBgAw4ox5uQdrrafsuN2Jqz9Icm8p5fAk70/yziS1nzEAgBFnwNexqrXOr7X+Kj0nq9+f5NRa6+b+xgZjogAAQ93Lrlj1p9a6KS99CnCPYwAAI40rrwMANCKsAAAaEVYAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjAwqrUsohpZTTSylTBntCAADD1V7DqpQyOcmtSU5MclcpZWopZUUp5b5Syqd32m63MQCAkWQgK1bHJVlWa/3LJP+Q5LQko2utJyU5upTyplLKol3HBm/KAABD05i9bVBr/cckKaWckp5Vq0OSrOw8fEeSk5Oc0M/YT1tPFgBgKBvoOVYlyVlJNiWpSX7ReejpJNOSTOhnbNd9nF9KWV1KWd3V1bWv8wYAGHIGFFa1x9IkDyV5V5LxnYcmdvbxbD9ju+7j2lrr3Frr3KlTp+7zxAEAhpqBnLx+YSnl3M7dNyb5Ynre6kuS45OsT7KmnzEAgBFlr+dYJbk2ycpSyuIka5PckuSeUsrhSd6f5J3peXvw3l3GAABGlIGcvL4pyek7j5VS5nfGLq21bt7TGADASDKQFavddGJr5d7GAABGEr/SBgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjQgrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjQgrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjQgrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjQgrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjQgrAIBGxhzoCQymWRfdNij7Xf/FMwZlvwDA8GbFCgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjQgrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA0IqwAABrZa1iVUiaVUr5bSrmjlHJzKeWgUsqKUsp9pZRP77TdbmMAACPJQFaszknypVrr7yfZmOTsJKNrrSclObqU8qZSyqJdxwZvygAAQ9OYvW1Qa/3aTnenJvlokq907t+R5OQkJyRZucvYT9tNEwBg6BvwOVallJOSTE7yr0l+0Rl+Osm0JBP6Gdv1+eeXUlaXUlZ3dXXt06QBAIaiAYVVKeWQJFck+eMkzyYZ33loYmcf/Y31UWu9ttY6t9Y6d+rUqfs6bwCAIWcgJ68flOTGJJ+qtT6WZE163upLkuOTrN/DGADAiLLXc6ySnJfkd5NcXEq5OMn/SvKxUsrhSd6f5J1JapJ7dxkDABhRBnLy+tVJrt55rJTynSSnJ7m01rq5MzZ/1zEAgJFkICtWu6m1bspLnwLc4xgAwEjiyusAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjwgoAoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI0IKwCARoQVAEAjYw70BGDI++ykQdz35sHbNwD7nRUrAIBGhBUAQCPCCgCgEWEFANCIsAIAaERYAQA0IqwAABoRVgAAjQgrAIBGhBUAQCMDCqtSyrRSyr2d22NLKX9fSvlhKeWP9zQGADDS7DWsSimTk/xNkgmdoT9NsqbW+u4kHyqlvH4PYwAAI8pAVqy2JTkrya869+cnWdm5fU+SuXsYAwAYUfYaVrXWX9VaN+80NCHJLzq3n04ybQ9jfZRSzi+lrC6lrO7q6tq3WQMADEGv5uT1Z5OM79ye2NlHf2N91FqvrbXOrbXOnTp16quZKwDAkPZqwmpNkpM7t49Psn4PYwAAI8qYV/Gcv0lyeynl95K8NcmP0vM24K5jAAAjyoBXrGqt8zv/+1iS05P8MMmCWuu2/sYGYa4AAEPaq1mxSq31ibz0KcA9jgEAjCSuvA4A0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaEFQBAI8IKAKARYQUA0IiwAgBoRFgBADQirAAAGhFWAACNCCsAgEaahlUpZUUp5b5Syqdb7hcAYDhoFlallEVJRtdaT0pydCnlTa32DQAwHLRcsZqfZGXn9h1JTm64bwCAIa/UWtvsqJQVSb5aa/1/pZTfT/K7tdYv7vT4+UnO79x9S5JHmnzhA2NKkn8/0JNgnziGw59jOLw5fsPfSDqGR9Zapw5kwzENv+izScZ3bk/MLqthtdZrk1zb8OsdMKWU1bXWuQd6Hrx6juHw5xgOb47f8OcY9q/lW4Fr8tLbf8cnWd9w3wAAQ17LFatbktxbSjk8yfuTvLPhvgEAhrxmK1a11l+l5wT2+5OcWmvd3GrfQ9Br4i3NEc4xHP4cw+HN8Rv+HMN+NDt5HQBgpHPl9YZKKa8/0HPg1XP8hj/HcPhzDIe/kX4MhVU/SikPvsxjd5ZS7u78+VEp5a864wuT/N1+myR75PgNfy2OYSnlkFLK6aWUKfthyuzCv8PhzzF8dVqevD6slVK+n2R05+7RpZS7d3r4jFrrc53b23d56oullDlJFif5yE77m5bk27XW3xukKbOTlsevlDIpyf/u7O+5JGfVWl8crLnTo/ExnJzk1iS3JflSKeW0WmvXoE2eJO1/jnb2OS3J92qtJwzClNlF43+HY5L8rPMnSf601vovgzLxIURYveToWutRSVJKub/WOr9z++70/Qt0e5Ka5O1JHkjyiyTzkpyT5LRSyr2d7f4myYT9MnOStsfvvyT5Uq31zlLK1Unel+Q7++l1jGQtj+FxSZbVWu/vRNbvJvmH/fQ6RrJmx7DWuqmz7eV56RqJDL6W/w6PSvJ3tdYL99vshwBh9ZJJpZRVnduzd7p9fHr+8qSUcl6SDyT5TZJ3JJmcZGySLyeZm2RRev4LeUKSs5L83/02e5odv1rr13ba79QkTw7+9EnbY/iPne1PSXJiks/vrxcxwrX8OZpSymnpWTXeuL9eAE2P4TuTfLCUcmqSf0ny32qt3fvrhRwowuolT9daFyS9lb7j9t07Nqi1riilHJFkS5IfJDk4PZU+PT0/vM+rtW5L8qvOc/frCxjhWh6/dJ57UpLJtdb799urGNmaHsPS8w/wrCSb0vN/AAy+ZsewlHJQkkuS/Kf0XCeR/aPlMfznJAtqrf9WSvnb9MTYa371X1i95OUqaOeT/E9Kz1+ipGd5+odJrqu1fqOU8l9LKeN3WfFg/2h6/EophyS5Isl/Hpzp0o+mx7D2XEtmaSnlL5L8QZL/MyizZmfNjmF6fg/d12qtz/iP1P2q5TFcUWvd2tlmdZI3NZ/tECSsXnLYTkX+1l1O2Nv5L9pfJPlpet7m+1SStbXWJ0spZ6fnh/dZ+2Gu7K7Z8ev8l/KNST5Va31s0GfODi2P4YVJ/q3W+rdJ3pjkmcGePEna/hxdlZ5zdZYmmVNKua7WuniwXwBNj+H1pZS/TLI2yR8m+R+DPPchQVi9ZFqt9fkk6SxfvmentxT+eyllc5KfJPlEks8kGZekK8miUsp/SE+5f7jW6i2HA6PZ8SulXJCek50vLqVcnOTqWqvVjsHX8hhem2RlKWVxen6o37H/X86I1PLn6Ck7dlpKuVtU7Tct/x1+Psm30hNk36m1rtr9y732uPJ6P0op1yU5IT3nZpQkM5OckeRfk3QnWZik1lpvLqWckWRCrXXlgZovfTl+w59jOPw5hsOfY/jqCCsAgEZceR0AoBFhBQDQiLACAGhEWAEANCKsAAAaEVYAAI38f/kDqZxqzvj+AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 720x576 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# 多个系列数据\n", "plt.figure(figsize=(10,8))\n", "x = range(len(电影名称))\n", "y1 = 电影票房1\n", "y2 = 电影票房2\n", "\n", "plt.bar(x, y1, width=0.2, label='首日票房')\n", "plt.bar([i + 0.3 for i in x], y2, width=0.2, label='周均票房')\n", "# 修改刻度 显示电影米杆子\n", "plt.xticks([i + 0.1 for i in x], 电影名称)\n", "plt.legend(loc='upper center')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAAHTCAYAAABWYcPeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmYjfX/x/HXZzYMkqTIzhxmY5Ip2yRrUZaSJSkt34gSbbRQiqzfUOpLRsiXoRRpI1GWvug3TNaZMdlJhZB9meXz+2OmqWFkLOM+M/fzcV1znXPe5zPT63Z1XY7X3PfnNtZaAQAAAAAAwD18nA4AAAAAAACAK4tCCAAAAAAAwGUohAAAAAAAAFyGQggAAAAAAMBlKIQAAAAAAABchkIIAAAAAADAZSiEAAAAAAAAXOYfCyFjTCVjzFfGmO+NMSMzZhONMSuMMf3/tu6sGQAAAAAAALzT+c4QGi5pkLX2VklljTFtJflaa+tKqmyM8WQ3y+XMAAAAAAAAuAR+53m/qqQfM57vlTRS0pMZr7+RFCWppqSZZ8w2nfmDjDHdJHWTpMKFC9cKDg6+pOAAAAAAAAD4S1xc3O/W2pI5WXu+QugTSQOMMT9Iai7pO0m7M947IOkmSYWzmZ3FWhstKVqSIiMj7apVq3KSDwAAAAAAADlgjNmR07X/eMmYtfYNSfMkPSZpiqSjkgplvF0k4/uzmwEAAAAAAMBL5aS8WSOpvKRRkuKUfkmYJEVI2n6OGQAAAAAAALzU+S4Zk6Q+kkZZa48bY+ZI+t4Yc4OkFpLqSLLZzAAAAAAAAOClznuGkLV2gLV2asbzw5IaSvpBUiNr7aHsZrkXFwAAAAAAAJcqJ2cIZWGtPai/7ip2zhkAAAAAAAC8ExtAAwAAAAAAuAyFEAAAAAAAgMtQCAEAAAAAALgMhRAAAAAAAIDLUAgBAAAAAAC4DIUQAAAAAACAy1AIAQAAAAAAuAyFEAAAAAAAgMtQCAEAAAAAALgMhRAAAAAAAIDLUAgBAAAAAAC4DIUQAAAAAACAy1AIAQAAAAAAuAyFEAAAAAAAgMtQCAEAAAAAALgMhRAAAAAAAIDLUAgBAAAAAAC4DIUQAAAAAACAy1AIAQAAAAAAuAyFEAAAAAAAgMtQCAEAAAAAALgMhRAAAAAAAIDLUAgBAAAAAAC4DIUQAAAAAACAy1AIAQAAAAAAuAyFEAAAAAAAgMtQCAEAAAAAALgMhRAAAAAAAIDLUAgBAAAAAAC4DIUQAAAAAACAy1AIAQAAAAAAuAyFEAAAAAAAgMtQCAEAAAAAALgMhRAAAAAAAIDLUAgBAAAAAAC4DIUQAAAAAACAy1AIAQAAAAAAuAyFEAAAAAAAgMtQCAEAAAAAALjMeQshY0xxY8xcY8wqY8z4jNlEY8wKY0z/v607awYAAAAAAADvk5MzhB6UFGOtjZRU1BjTV5KvtbaupMrGGI8xpu2Zs1zMDAAAAAAAgEuQk0Jov6RwY8zVkspJqiRpZsZ730iKktQwm1kWxphuGWcZrdq3b9+l5gYAAAAAAMBFykkh9D9JFST1kpQoKUDS7oz3Dki6XlLhbGZZWGujrbWR1trIkiVLXmpuAAAAAAAAXKScFEIDJHW31g6UtFHS/ZIKZbxXJONnHM1mBgAAAAAAAC+Uk+KmuKTqxhhfSbUlDdNfl4RFSNouKS6bGQAAAAAAALyQXw7WDJU0WemXja2QNFrS98aYGyS1kFRHks1mBgAAAAAAAC903jOErLWx1towa20Ra20za+1hpW8i/YOkRtbaQ9nNcjM0AAAAAAAALl5OzhA6i7X2oP66q9g5ZwAAAAAAAPA+bP4MAAAAAADgMhRCAAAAAAAALkMhBAAAAAAA4DIUQgAAAAAAAC5DIQQAAAAAAOAyFEIAAAAAAAAuQyEEAAAAAADgMhRCAAAAAAAALkMhBAAAAAAA4DIUQgAAAAAAAC5DIQQAAAAAAOAyFEIAAAAAAAAuQyEEAAAAAADgMhRCAAAAAAAALkMhBAAAAAAA4DIUQgAAAAAAAC5DIQQAAAAAAOAyFEIAAAAAAAAuQyEEAAAAAADgMhRCAAAAAAAALkMhBAAAAAAA4DIUQgAAAAAAAC5DIQQAAAAAAOAyFEIAAAAAAAAuQyEEAAAAAADgMhRCAAAAAAAALkMhBAAAAAAA4DIUQgAAAAAAAC5DIQQAAAAAAOAyFEIAAAAAAAAuQyEEAAAAAADgMhRCAAAAAAAALkMhBAAAAAAA4DIUQgAAAAAAAC5DIQQAAAAAAOAyFEIAAAAAAAAuQyEEAAAAAADgMhRCAAAAAAAALkMhBAAAAAAA4DJ+51tgjOkhqWPGy6sl/V/G94VK+spa+0bGuolnzgAAAAAAAOB9znuGkLV2nLW2obW2oaTvJW2R5GutrSupsjHGY4xpe+YsV1MDAAAAAADgop33DKE/GWPKSLpekpU0M2P8jaQoSTWzmW26fDEBAAAAAABwuVzIHkJPShonqbCk3RmzA0ovibKbZWGM6WaMWWWMWbVv376LTwwAAAAAAIBLkqNCyBjjI6mRpMWSjkoqlPFWkYyfkd0sC2tttLU20lobWbJkyUuMDQAAAAAAgIuV0zOEbpX0f9ZaKylO6ZeESVKEpO3nmAEAAAAAAMAL5XQPoTskLc14PkfS98aYGyS1kFRH6fsKnTkDAAAAAACAF8rRGULW2pettbMznh+W1FDSD5IaWWsPZTfLnbgAAAAAAAC4VDm+y9jfWWsP6q+7ip1zBgAAAAAAAO9zIXcZAwAAAAAAQD5AIQQAAAAAAOAyFEIAAAAAAAAuQyEEAAAAAADgMhRCAAAAAAAALkMhBAAAAAAA4DIUQgAAAAAAAC5DIQQAAAAAAOAyFEIAAAAAAAAuQyEEADkUEyNVrCj5+KQ/xsQ4nQgAAAAALo6f0wEAIC+IiZG6dZOOH09/vWNH+mtJ6tzZuVwAAAAAcDE4QwgAcqBfv7/KoD8dP54+BwAAAIC8hkIIAHJg584LmwPI+7hMFAAA5GcUQgCQA+XLX9gcQN7252WiO3ZI1v51mSilEAAAyC8ohAAgBwYPlgIDs84CA9PnAPIfLhMFAAD5HYUQAORA585SdLRUoYJkTPpjdDQbSgP5FZeJAgCA/I67jAFADnXuTAEEuEX58umXiWU3BwAAyA84QwgAAOAMXCYKAADyOwohAACAM3CZKAAAyO+4ZAwAACAbXCYKAADyM84QAgAAAAAAcBkKIQAAAAAAAJehEAIAAAAAAHAZCiEAAAAAAACXoRACAAAAAABwGQohAAAAAAAAl6EQAgAAAAAAcBkKIQAAAAAAAJehEAIAAAAAAHAZCiEAAAAAAACXoRACAAAAAABwGQohAAAAAAAAl6EQAgAAAAAAcBkKIQAAAAAAAJehEAIAAAAAAHAZCiEAAAAAAACXoRACAAAAAABwGQohAAAAAAAAl6EQAgAAAAAAcBkKIQAAAAAAAJfJcSFkjBlrjGmV8XyiMWaFMab/394/awYAAAAAAADvk6NCyBhzq6RS1tovjDFtJflaa+tKqmyM8WQ3y8XMAAAAAAAAuATnLYSMMf6SJkjaboxpI6mhpJkZb38jKeocszN/TjdjzCpjzKp9+/ZdenIAAAAAAABclJycIdRFUoKkEZJukfSkpN0Z7x2QdL2kwtnMsrDWRltrI621kSVLlrzU3AAAAAAAALhIfjlYU1NStLX2N2PMNEn1JBXKeK+I0kulo9nMAAAAAAAA4IVyUtxsllQ543mkpIr665KwCEnbJcVlMwMAAAAAAIAXyskZQhMlTTLG3CfJX+n7BX1ujLlBUgtJdSRZSd+fMQMAAAAAAIAXOm8hZK09Iqn932fGmIaSmkkaYa09dK4ZAAAAAAAAvE9OzhA6i7X2oP66q9g5ZwAAAAAAAPA+bP4MAAAAAADgMhRCAAAAACApJkaqWFHy8Ul/jIlxOhEA5J6LumQMAAAAAPKTmBipWzfp+PH01zt2pL+WpM6dncsFALmFM4QAAAAAuF6/fn+VQX86fjx9DgD5EYUQAAAAANfbufPC5gCQ11EIAQAAAHC98uUvbA4AeR2FEAAAAADXGzxYCgzMOgsMTJ8DQH5EIQQAAADA9Tp3lqKjpQoVJGPSH6Oj2VAaQP7FXcYAAAAAQOnlDwUQALfgDCEAAAAAAACXoRACAAAAAABwGQohAAAAAAAAl6EQAgAAAAAAcBkKIQAAAAAAAJehEAIAAAAAAHAZCiEAAAAAAACXoRACAAAAAABwGQohAAAAAAAAl6EQAgAAAAAArhMTI1WsKPn4pD/GxDid6MryczoAAAAAAADAlRQTI3XrJh0/nv56x47015LUubNzua4kzhACAAAAAACu0q/fX2XQn44fT5+7BYUQAAAAAABwlZ07L2yeH1EIAQAAAAAAVylf/sLm+RGFEAAAAAAAcJXBg6XAwKyzwMD0uVtQCAEAAAAAAFfp3FmKjpYqVJCMSX+MjnbPhtISdxkDAAAAAAAu1LmzuwqgM3GGEAAAAAAAgMtQCAEAAAAAALgMhRAAAAAAAIDLUAgBAAAAAAC4DIUQAAAAAACAy3CXMQAAAACulJycrO3bt2vTpk2ZX1u3blVaWpr8/f3l5+cnPz+/bJ97w8zX11fGGKf/GAHkURRCAAAAAPKt1NRU7dy5U5s2bdJPP/2UpfzZtm2bUlNTM9cWK1ZMlStXVkBAgJKTk5WSkpL5+Pfn2c3S0tIcOT4ny6kr9d/z8/Oj+AJyAYUQAAAAgDwtLS1NP//8c5ay5+9n/Jw+fTpzbeHCheXxeFSzZk116NBBHo9HHo9HVatW1bXXXnvRxUNaWtpZJdH5SqTLPbuQ7zl9+rSOHz9+wd/79wLtSvL19fWKs7Jy+2dTfOFKohACAAAA4PWstfr111+zLX02b96skydPZq4tWLCggoKCFBISojZt2mSWPh6PR6VKlcqVf3T7+PgoICBAAQEBl/1nexNr7T8WUVe6BMtJhpMnT17Uz3GCj4+PVxVfuVWG+fiwnbE3oBACAAAA4BWstdq3b99Zhc9PP/2kzZs369ixY5lrAwICVKVKFXk8Ht1xxx1ZSp8yZcrwD85cYoyRv7+//P39VahQIafj5BprrVJTU6/I2VqXa3b8+PEL/p7k5GRH/nz//P/IW0quKlWqqFGjRo78WTiJQggAAADAFXXgwIGzCp8/nx8+fDhznZ+fnypVqiSPx6OGDRtmKX3Kly8vX19fB48C+ZkxJrM0yO/S0tK84jLGnM5Onjypo0ePXnCGf9rnq3379hRCAAAAAHA5HD58ONuNnDdt2qQDBw5krvPx8VGFChXk8XhUp06dLHv6VKhQQf7+/g4eBZD/+fj4qECBAipQoIDTUXLV3/f5OrNEyu/Hfi4UQgAAAAAuyrFjx7Ld02fTpk3au3dvlrXlypWTx+NR+/btMwsfj8ejSpUqufYfYwCuHLfs83Uh/rEQMsb4Sdqa8SVJT0lqJ+lOSbHW2icz1r1+5gwAAABA3nfixAlt2bIl29Lnl19+ybK2dOnS8ng8at26dZbLu6pUqZKv95sBgLzofGcI1ZA0w1r7giQZY2pJipJ0i6RXjTFNJR08c2atXZiLmQEAAABcRqdPn9bWrVuz3cz5559/lrU2c+11110nj8ej22+/PUvpExQUpCJFijh4FACAC3G+QqiOpJbGmEaS1ktKkjTLWmuNMfMltZB0KJvZWYWQMaabpG6SVL58+ct4CAAAAADOJyUlRdu3b892M+cdO3Zk2XD1mmuukcfj0W233Zal9PF4PCpWrJiDRwEAuFzOVwitlNTUWvurMea/kgopvRSSpAOSrpeUImnLGbOzWGujJUVLUmRkpM1uDQAAAICLl5qaql27dmW7kfO2bduUkpKSufaqq66Sx+NR7dq19cADD2QpfUqUKOHgUQAAroTzFULrrLWnMp6vkuSv9FJIkopI8pF0NJsZAAAAgFyQlpam3bt3Z7unz5YtW3T69OnMtYGBgfJ4PIqIiFC7du0yN3L2eDwqWbKkjDEOHgkAwEnnK4SmGmMGS9og6W5Ji5W+X9CHkiIkbZcUJ6nDGTMAAAAAF8laq99++y3b0mfz5s06ceJE5tqCBQuqSpUqCg4OVqtWrbKc6VO6dGlKHwBAts5XCA2UNF2SkfS5pDckfW+MeVtS84yvHZKGnjEDAAAA8A+stfr999/Pedv2o0ePZq719/dXlSpV5PF41KxZsyylT9myZeXjw0n6AIAL84+FkLV2g9LvNJYp485id0l621q77VwzAAAAANLBgwfP2sT5z69Dhw5lrvP19VWlSpXk8Xh06623Zil9ypcvLz+/8/0uFwCAnLvgv1WstSckfXK+GQAAAOAWhw8fPueZPvv3789cZ4xRhQoV5PF41Llz58zCp2rVqqpYsaL8/f0dPAoAgJvwawYAAAAgB44dO6bNmzdnW/rs2bMny9qyZcvK4/Ho3nvvzbKRc+XKlVWgQAGHjgAAgL9QCAEAAAAZTp48qS1btmRb+uzevTvL2lKlSqlq1apq2bJllsu7qlSposDAQIeOAACAnKEQAgAAgKucPn1a27Zty1L2/Lm3z65du2StzVxbsmRJeTweNW3aNEvpExQUpKJFizp4FAAAXBoKIQAAAOQ7KSkp2rFjR7YbOe/YsUOpqamZa4sXL57tRs4ej0dXX321g0cBAEDuoRACAABAnpSWlqZdu3adVfhs2rRJ27ZtU3JycubaokWLyuPx6Oabb9b999+fuZGzx+NRiRIlHDwKAACcQSEEAAAAr2Wt1e7du7Pd02fLli06depU5trAwEAFBQWpevXquvfee7Oc6XPdddfJGOPgkQAA4F0ohAAAAOAoa6327Nlzztu2nzhxInNtgQIFFBQUpKpVq+quu+7KUvrccMMNlD4AAOQQhRAAAABynbVW+/fvz3Yj582bN+vIkSOZa/39/VW5cmV5PB41adIkS+lTrlw5+fj4OHgkAADkDxRCAAAAuGz++OOPswqfP7/++OOPzHW+vr6qWLGiPB6PoqKispQ+FSpUkJ8fH1MBAMhN/E0LAACAC3LkyJFzXt71+++/Z64zxqh8+fLyeDzq1KlTlo2cK1asqICAAAePAgAAd6MQAgAAwFmOHz+uzZs3Z1v6/Pbbb1nWlilTRh6PR23bts1ypk/lypVVsGBBh44AAAD8EwohAAAAlzp16pS2bNlyVuHz008/affu3VnWlipVSh6PR3feeWeW0icoKEiBgYEOHQEAALhYFEKXaN68eWrQoIEKFy7sdBQAAICzJCcna9u2bdlu5rxz505ZazPXXnvttdlu5BwUFKSrrrrKwaMAAACXG4XQJdi9e7fatGmjsmXLavz48WrWrJnTkQAAgAulpqZqx44d2W7kvH37dqWmpmauvfrqq+XxeFS/fn09/PDDWYqf4sWLO3gUAADgSqIQugRlypTRggUL1LVrV91+++166KGHNHLkSJUoUcLpaAAAIJ9JS0vTrl27st3TZ+vWrUpOTs5cW6RIEXk8HtWqVUv33Xdf5kbOHo9HJUqUkDHGwSMBAADewPz9NOErJTIy0q5ateqK/3dzy8mTJzVo0CCNGDFCxYsX15gxY9SxY0c+bAEAgAtirdUvv/ySbemzZcsWnTx5MnNtoUKFFBQUlKXs+fPr+uuv53MIAAAuZIyJs9ZG5mgthdDls3btWj322GNatWqV7rrrLo0dO1bly5d3OhYAAPAi1lrt3bv3nLdtP378eObagIAABQUFnVX4eDwe3XDDDfLx8XHwSAAAgLehEHJQSkqKxowZo1deeUU+Pj4aOnSonnjiCT6wAQDgMvv37892I+fNmzfr8OHDmev8/PxUuXLlbEufcuXKydfX18GjAAAAeQmFkBfYtm2bHn/8cS1YsEB169bVhAkTFBYW5nQsAABwGR06dCjbjZw3bdqkgwcPZq7z8fFRxYoVzyp8qlatqgoVKsjPj20dAQDApaMQ8hLWWk2dOlXPPPOMjhw5opdfflkvvfSSChQo4HQ0AACQQ0ePHj3n5V379u3LXGeMUbly5bKUPX8+r1SpkgICAhw8CgAA4AYUQl5m7969evrppzVjxgyFhobq/fffV926dZ2OBQAA/sGePXv0/PPPKyYmRn//vHTDDTdku5FzlSpVVLBgQQcTAwAAt6MQ8lJfffWVevTooZ9//llPPvmkhgwZoqJFizodCwAA/E1qaqrGjx+vl19+WcePH1fPnj1Vr149eTweBQUFqXDhwk5HBAAAyBaFkBc7cuSI+vXrp3fffVdlypTRe++9p7vuusvpWAAAQFJcXJx69OihlStXqnHjxho7dqyqVavmdCwAAIAcuZBCiFtfXWFFixbVmDFjtGzZMl111VVq2bKlOnXqpL179zodDQAA1zp06JCeeuop3XLLLdq1a5emT5+uhQsXUgYBAIB8i0LIIXXr1tWPP/6o119/XbNmzVJISIimTJkiJ87YAgDAray1mj59uqpVq6axY8fqiSee0MaNG9WpUycZY5yOBwAAkGsohBxUoEABvfrqq1qzZo2Cg4P18MMP64477tC2bducjgYAQL6XlJSkZs2aqXPnzipXrpxiY2P1zjvvqFixYk5HAwAAyHUUQl4gNDRU33//vf7zn/9oxYoVCg8P16hRo5SSkuJ0NAAA8p0TJ07olVdeUY0aNbRq1SqNHTtWP/zwg2rVquV0NAAAgCuGQshL+Pj46IknnlBCQoIaN26s5557TnXr1tXatWudjgYAQL4xd+5chYWF6Y033lCHDh2UlJSkHj16yNfX1+loAAAAVxSFkJcpV66cPv/8c3344YfasWOHatWqpZdfflknTpxwOhoAAHnWrl27dO+99+quu+5SgQIF9N1332nq1Km6/vrrnY4GAADgCAohL2SMUceOHZWYmKgHH3xQQ4cOVUREhJYsWeJ0NAAA8pTk5GS9+eabCgkJ0bx58zRkyBCtXbtWjRo1cjoaAACAoyiEvFiJEiU0efJkLViwQCkpKWrYsKG6deumP/74w+loAAB4vWXLlummm25Snz591KhRI8XHx+ull15SQECA09EAAAAcRyGUBzRt2lTr16/X888/r4kTJyo0NFSzZ892OhYAAF7p999/16OPPqqoqCgdOnRIn376qT7//HNVqlTJ6WgAAABeg0IojyhcuLD+/e9/KzY2Vtddd53uvfdetW3bVr/88ovT0QAA8AppaWl6//33Va1aNU2dOlV9+/ZVYmKi7r77bhljnI4HAADgVSiE8phatWpp5cqVGjp0qObOnavQ0FBFR0crLS3N6WgAADhm7dq1ioqKUteuXRUWFqbVq1dr+PDhKly4sNPRAAAAvBKFUB7k7++vF198UevXr1fNmjX1+OOPq3Hjxvrpp5+cjgYAwBV15MgRPfvss6pVq5Y2bdqkDz74QEuWLFF4eLjT0QAAALwahVAe5vF49N1332nChAlas2aNatSooaFDhyo5OdnpaAAA5CprrT755BOFhITorbfe0mOPPaakpCQ99NBDXB4GAACQAxRCeZwxRo899pgSExPVsmVLvfzyy4qMjNTKlSudjgYAQK7YsmWL7rzzTrVv314lS5bU8uXL9d577+maa65xOhoAAECeQSGUT5QuXVqffPKJZs+erX379qlOnTp67rnndOzYMaejAQBwWZw6dUoDBw5UWFiYli1bprfeeksrV65UnTp1nI4GAACQ51AI5TP33HOPEhIS1LVrV40aNUrh4eH65ptvnI4FAMAlWbhwoapXr64BAwbo7rvv1saNG9W7d2/5+fk5HQ0AACBPylEhZIy53hizOuP5RGPMCmNM/7+9f9YMzrn66qv13nvvacmSJQoICNAdd9yhhx56SPv373c6GgAAF+SXX35Rp06d1KxZM1lrNX/+fH344Ye64YYbnI4GAACQp+X0DKE3JRUyxrSV5GutrSupsjHGk90st8LiwjRo0EBr165Vv379NH36dIWEhGjGjBmy1jodDQCAf5SSkqIxY8YoODhYn376qV577TWtX79et99+u9PRAAAA8oXzFkLGmMaSjkn6TVJDSTMz3vpGUtQ5ZvASBQsW1BtvvKG4uDhVrFhR999/v1q1aqWdO3c6HQ0AgGzFxsbqlltuUe/evVWvXj1t2LBBAwYMUMGCBZ2OBgAAkG/8YyFkjAmQ9IqkFzNGhSXtznh+QNL155hl97O6GWNWGWNW7du371Jz4wLVqFFDK1as0KhRo7Ro0SKFhYXp3XffVWpqqtPRAACQJB08eFDdu3dXnTp1tGfPHs2cOVPz5s1TUFCQ09EAAADynfOdIfSipLHW2j8yXh+VVCjjeZGM789udhZrbbS1NtJaG1myZMlLS42L4uvrq2eeeUYbNmxQvXr19NRTT+nWW29VfHy809EAAC5mrdV///tfVatWTRMmTFDv3r2VmJio9u3byxjjdDwAAIB86XyFUFNJTxpjFku6UVIr/XVJWISk7ZLispnBi1WqVElff/21/vvf/yopKUk1a9bUa6+9plOnTjkdDQDgMgkJCWrUqJEeeughValSRXFxcRo9erSuuuoqp6MBAADka/9YCFlrG1hrG1prG0pao/RS6EFjzChJHSR9JWlONjN4OWOMHnzwwczfwL7++uuqWbOmli9f7nQ0AIALHDt2TC+++KIiIiK0bt06RUdHa9myZbrxxhudjgYAAOAKOb3LmDKKocNK30T6B0mNrLWHspvlRlDkjuuuu04xMTH66quvdPToUUVFRalnz546fPiw09EAAPnU559/rrCwMA0fPlwPPPCAkpKS1LVrV/n45PhjCQAAAC7RBX/ystYetNbOtNb+9k8z5C133nmn4uPj9dRTT2ns2LEKCwvTl19+6XQsAEA+sn37drVp00Zt2rRRkSJFtHTpUk2ePFnsLQgAAHDl8as4ZCpatKjefvttLVu2TFdddZVatWqlTp06ae/evU5HAwDkYadPn9awYcMUGhqqhQsXasSIEVq9erVuvfVWp6MBAAC4FoUQzlK3bl2tXr1ar7/+umbPnq2QkBBNmTJF1lqnowEA8pjFixfrxhtv1EsvvaTmzZsrMTFRffr0kb+P1z7SAAAgAElEQVS/v9PRAAAAXI1CCNkKCAjQq6++qtWrVys4OFgPP/ywbr/9dm3dutXpaACAPGDv3r3q0qWLGjVqpBMnTuiLL77Q7NmzVb58eaejAQAAQBRCOI/Q0FB9//33+s9//qP/+7//U3h4uEaOHKmUlBSnowEAvFBqaqree+89VatWTR9++KH69eun+Ph4tWzZ0uloAAAA+BsKIZyXj4+PnnjiCcXHx6tJkyZ6/vnnVadOHa1Zs8bpaAAAL/Ljjz+qXr166tGjh2rWrKl169bpjTfeUGBgoNPRAAAAcAYKIeRYuXLl9Pnnn+ujjz7Srl27FBkZqZdeekknTpxwOhoAwEGHDh1Sr169dPPNN2vHjh2aNm2avv32WwUHBzsdDQAAAOdAIYQLYoxRhw4dlJiYqC5dumjYsGGKiIjQ4sWLnY4GALjCrLX68MMPFRwcrHfffVc9evTQxo0b1blzZxljnI4HAACAf0AhhItyzTXXaNKkSVqwYIFSU1PVqFEjde3aVX/88YfT0QAAV8BPP/2k22+/XZ06dVKZMmUUGxurd999V1dffbXT0QAAAJADFEK4JE2bNtX69evVp08fTZo0SSEhIZo9e7bTsQAAueTEiRN69dVXVb16da1cuTLzpgORkZFORwMAAMAFoBDCJQsMDNSIESMUGxurUqVK6d5771Xbtm31yy+/OB0NAHAZzZs3T+Hh4Ro0aJDat2+vjRs36oknnpCvr6/T0QAAAHCBKIRw2dSqVUuxsbEaNmyY5s2bp5CQEEVHRystLc3paACAS/Dzzz+rXbt2uvPOO+Xv769vv/1W06ZNU6lSpZyOBgAAgItEIYTLyt/fXy+88ILWrVunm266SY8//rgaNWqkpKQkp6MBAC5QSkqKRo0apZCQEH311VcaPHiw1q5dq8aNGzsdDQAAAJeIQgi5wuPx6LvvvtP777+vtWvXKiIiQkOGDFFycrLT0QAAObB8+XLVqlVLzz33nG677TYlJCTo5ZdfVoECBZyOBgAAgMuAQgi5xhijf/3rX0pMTFSrVq3Ur18/RUZGauXKlU5HAwCcw/79+/XYY4+pfv36OnDggGbPnq0vvvhClSpVcjoaAAAALiMKIeS60qVL6+OPP9ann36q33//XXXq1NFzzz2nY8eOOR0NAJAhLS1NkyZNUrVq1TRlyhT16dNHiYmJuueee2SMcToeAAAALjMKIVwxd999txISEtS1a1eNGjVK4eHh+uabb5yOBQCut379ejVo0ED/+te/FBISotWrV2vEiBEqUqSI09EAAACQSyiEcEUVK1ZM7733npYsWaKAgADdcccdeuihh7R//36nowGA6xw9elTPP/+8atasqY0bN2rSpElasmSJwsPDnY4GAACAXEYhBEc0aNBAa9euVb9+/TR9+nSFhIRoxowZstY6HQ0A8j1rrWbPnq2QkBCNHDlSjz76qJKSkvTII4/Ix4ePBgAAAG7Apz44pmDBgnrjjTcUFxenihUr6v7771fLli21c+dOp6MBQL61detWtWzZUvfee69KlCih5cuXKzo6WiVKlHA6GgAAAK4gCiE4rkaNGlqxYoVGjx6txYsXKywsTO+8845SU1OdjgYA+capU6c0aNAghYWFaenSpRo1apRWrVqlunXrOh0NAAAADqAQglfw9fXV008/rfj4eNWrV0+9evVSVFSU4uPjnY4GAHnet99+qxo1aujVV19Vq1attHHjRj3zzDPy8/NzOhoAAAAcQiEEr1KxYkV9/fXXmjp1qjZt2qSaNWtqwIABOnXqlNPRACDP+fXXX3X//feradOmSk1N1bx58zRz5kyVKVPG6WgAAABwGIUQvI4xRg888IASExPVvn17DRw4UDVr1tTy5cudjgYAeUJqaqreeecdBQcHa9asWRowYIA2bNig5s2bOx0NAAAAXoJCCF6rZMmSiomJ0dy5c3Xs2DFFRUWpZ8+eOnz4sNPRAMBrrVy5Urfccot69eql2rVra8OGDXrttddUsGBBp6MBAADAi1AIweu1aNFC8fHxeuqppzR27FiFhYXpyy+/dDoWAHiVgwcP6oknnlDt2rX166+/6qOPPtL8+fPl8XicjgYAAAAvRCGEPKFIkSJ6++23tXz5chUrVkytWrXSfffdpz179jgdDQAcZa3V1KlTFRwcrPHjx6tXr17auHGjOnToIGOM0/EAAADgpSiEkKfUqVNHP/74owYOHKhPP/1UISEh+uCDD2StdToaAFxxiYmJaty4sbp06aJKlSpp1apVeuutt3TVVVc5HQ0AAABejkIIeU5AQIBeeeUVrVmzRqGhoXrkkUfUrFkzbd261eloAHBFHD9+XC+//LIiIiK0du1ajR8/XsuXL1fNmjWdjgYAAIA8gkIIeVZISIiWLl2qsWPHKjY2VuHh4Ro5cqRSUlKcjgYAueaLL75QaGiohg4dqvvvv18bN25Ut27d5OPDX+kAAADIOT49Ik/z8fFRjx49lJCQoKZNm+r5559XnTp1tGbNGqejAcBltXPnTt19991q3bq1ChcurCVLluiDDz7Qdddd53Q0AAAA5EEUQsgXypYtq88++0wfffSRdu3apcjISL300ks6ceKE09EA4JIkJydrxIgRCgkJ0YIFCzR8+HCtWbNGDRo0cDoaAAAA8jAKIeQbxhh16NBBiYmJ6tKli4YNG6YaNWpo8eLFTkcDgIuydOlS3XjjjXrhhRfUrFkzJSQkqG/fvvL393c6GgAAAPI4CiHkO9dcc40mTZqkhQsXKi0tTY0aNVLXrl118OBBp6MBQI7s27dPDz/8sG677TYdO3ZMn3/+uebMmaMKFSo4HQ0AAAD5BIUQ8q0mTZpo/fr16tOnjyZNmqTQ0FDNmjXL6VgAcE5paWkaP368qlWrpunTp+ull15SQkKCWrVq5XQ0AAAA5DMUQsjXAgMDNWLECK1cuVKlSpVSu3btdM8992j37t1ORwOALFavXq169eqpe/fumbeTHzJkiAIDA52OBgAAgHyIQgiucNNNNyk2NlbDhw/X119/rdDQUI0fP15paWlORwPgcocPH9bTTz+tyMhIbdu2TVOnTtV3332nkJAQp6MBAAAgH6MQgmv4+/urb9++Wr9+vWrVqqXu3burUaNGSkpKcjoaABey1uqjjz5ScHCwxowZo8cff1wbN27UAw88IGOM0/EAAACQz1EIwXWCgoL07bffauLEiVq3bp0iIiI0ZMgQJScnOx0NgEts2rRJzZs313333afSpUvrhx9+0NixY1W8eHGnowEAAMAlKITgSsYYPfroo0pMTFTr1q3Vr18/1apVSytXrnQ6GoB87OTJkxowYIDCw8P1ww8/6J133lFsbKxuueUWp6MBAADAZXJUCBljrjHGNDPGXJvbgYArqVSpUpo5c6bmzJmj/fv3q06dOnr22Wd17Ngxp6MByGfmz5+v8PBwDRw4UO3atdPGjRvVs2dP+fr6Oh0NAAAALnTeQsgYU1zSl5JukbTIGFPSGDPRGLPCGNP/b+vOmgF5RZs2bZSQkKBu3bpp9OjRCg8P1/z5852OBSAf2L17t9q3b6/mzZvL19dXCxcuVExMjEqXLu10NAAAALhYTs4QqiHpWWvtYEnzJTWW5GutrSupsjHGY4xpe+Ys9yIDuaNYsWIaN26cli5dqgIFCqh58+bq0qWL9u/f73Q0AHlQSkqKRo8ereDgYH355ZcaNGiQ1q1bpyZNmjgdDQAAADh/IWStXWKt/cEY00DpZwndIWlmxtvfSIqS1DCbWRbGmG7GmFXGmFX79u27HNmBXHHrrbdqzZo16t+/v2bMmKGQkBBNnz5d1lqnowHII1asWKHIyEg9++yzatCggeLj49W/f38VKFDA6WgAAACApJzvIWQkdZR0UJKVtDvjrQOSrpdUOJtZFtbaaGttpLU2smTJkpeaG8hVBQsW1KBBg/Tjjz+qUqVK6ty5s1q2bKmdO3c6HQ2AF9u/f7+6du2qevXqaf/+/Zo1a5a+/PJLVa5c2eloAAAAQBY5KoRsuiclrZNUT1KhjLeKZPyMo9nMgDyvevXqWr58ud566y0tXrxYoaGheuedd5Samup0NABeJC0tTZMnT1ZwcLAmT56s5557TomJiWrbtq3Sf6cCAAAAeJecbCr9gjGmS8bLqyUN01+XhEVI2i4pLpsZkC/4+vqqd+/eio+PV1RUlHr16qWoqCjFx8c7HQ2AF9iwYYNuu+02Pfroo6pWrZpWr16tN998U0WKFHE6GgAAAHBOOTmTJ1rSg8aYpZJ8Jc3JeD1KUgdJX51jBuQrFStW1Lx58zRt2jRt2rRJNWvW1IABA3Tq1CmnowFwwNGjR9WnTx/deOONSkxM1MSJE7V06VJVr17d6WgAAADAeZmL2Sg341b0zSQttdb+dq7ZuURGRtpVq1ZdRFzAO+zbt0/PPPOMYmJiFBISogkTJqh+/fpOxwJwBVhrNWfOHPXu3Vu7du3SY489pmHDhqlEiRJORwMAAIDLGWPirLWROVl7UXv9WGsPWmtn/r34yW4G5FclS5bUtGnTNHfuXB07dkxRUVF68skndfjwYaejAchF27ZtU6tWrdS2bVsVL15cy5Yt04QJEyiDAAAAkOew+TNwCVq0aKH4+Hj17t1b48aNU2hoqL744gunYwG4zE6dOqXBgwcrNDRUS5Ys0ciRIxUXF6d69eo5HQ0AAAC4KBRCwCUqUqSI3nrrLa1YsULFixdX69at1bFjR+3Zs8fpaAAug++++04RERHq37+/WrZsqcTERD377LPy8/NzOhoAAABw0SiEgMukdu3aiouL06BBgzRnzhyFhITogw8+0MXs0wXAeb/99pseeOABNWnSRMnJyZo7d64+/vhjlS1b1uloAAAAwCWjEAIuo4CAAPXv319r165VWFiYHnnkETVr1kxbtmxxOhqAHEpNTdV//vMfBQcH6+OPP9Yrr7yiDRs2qEWLFk5HAwAAAC4bCiEgFwQHB2vJkiUaO3asYmNjVb16db355ptKSUlxOhqAf7Bq1SrVqVNHPXv2VGRkpNavX6+BAweqUKFCTkcDAAAALisKISCX+Pj4qEePHkpISFCzZs3Up08f1a5dW2vWrHE6GoAz/PHHH+rZs6duueUW/fzzz5oxY4YWLFigqlWrOh0NAAAAyBUUQkAuK1u2rObMmaOZM2dq9+7dioyM1IsvvqgTJ044HQ1wPWutYmJiFBwcrHHjxqlnz57auHGj7rvvPhljnI4HAAAA5BoKIeAKMMaoffv2SkhI0EMPPaThw4erRo0aWrRokdPRANfauHGjmjRpogceeEAVKlTQypUrNWbMGBUrVszpaAAAAECuoxACrqBrrrlGEydO1MKFC5WWlqbGjRura9euOnjwoNPRANc4fvy4+vXrpxo1amj16tUaN26cli9frptuusnpaAAAAMAVQyEEOKBJkyZav369+vbtq8mTJys0NFSzZs3iFvVALvvyyy8VFhamIUOGqFOnTkpKSlL37t3l6+vrdDQAAADgiqIQAhwSGBio4cOHKzY2VqVLl1a7du3Utm1b7d692+loQL6zc+dO3XPPPWrVqpUKFSqkxYsXa8qUKbruuuucjgYAAAA4gkIIcNhNN92k2NhYjRgxQl9//bVCQ0M1fvx4paWlOR0NyPOSk5P173//WyEhIZo/f76GDRumNWvW6LbbbnM6GgAAAOAoCiHAC/j5+alPnz5av369IiMj1b17dzVs2FBJSUlORwPyrO+//141a9ZU37591bRpUyUmJuqFF15QQECA09EAAAAAx1EIAV4kKChICxcu1MSJE7V+/XpFRERo8ODBOn36tNPRgDxj3759euSRR9SgQQMdOXJEn332mT777DNVqFDB6WgAAACA16AQAryMMUaPPvqoEhMT1bp1a/Xv31+RkZGKjY11Ohrg1dLS0jRhwgRVq1ZN06ZN04svvqiEhAS1bt3a6WgAAACA16EQArxUqVKlNHPmTM2ZM0f79+9X3bp19eyzz+rYsWNORwO8zpo1a1S/fn1169ZNNWrU0Nq1azV06FAVLlzY6WgAAACAV6IQArxcmzZtlJCQoMcff1yjR49WeHi45s+f73QswCscOXJEzzzzjGrVqqUtW7ZoypQpWrRokUJDQ52OBgAAAHg1CiEgDyhWrJjGjh2r77//XgUKFFDz5s3VpUsX/f77705HAxxhrdXHH3+s4OBgvf322+rWrZuSkpLUpUsXGWOcjgcAAAB4PQohIA+JiorSmjVr1L9/f82YMUMhISGaPn26rLVORwOumM2bN6tFixbq0KGDrr/+eq1YsULjxo1T8eLFnY4GAAAA5BkUQkAeU7BgQQ0aNEg//vijqlSpos6dO+uuu+7Sjh07nI4G5KqTJ0/q9ddfV3h4uJYvX663335bsbGxql27ttPRAAAAgDyHQgjIo6pXr65ly5bprbfe0tKlSxUWFqYxY8YoNTXV6WjAZbdgwQJVr15dr732mu655x4lJSWpV69e8vPzczoaAAAAkCdRCAF5mK+vr3r37q0NGzbo1ltvVe/evVW/fn1t2LDB6WjAZfHLL7+oY8eOuv3222WM0TfffKMZM2aodOnSTkcDAAAA8jQKISAfqFixoubOnatp06Zp8+bNuummm/Tqq6/q1KlTTkcDLkpKSorefvttBQcH67PPPtPAgQO1bt06NWvWzOloAAAAQL5AIQTkE8YYde7cWYmJierYsaMGDRqkG2+8UcuWLXM6GnBBfvjhB9188816+umnVb9+fcXHx+uVV15RwYIFnY4GAAAA5BsUQkA+U7JkSU2dOlXz5s3TiRMnFBUVpSeffFKHDx92Ohrwjw4cOKDHH39c9erV0759+/Txxx9r7ty5qlKlitPRAAAAgHyHQugSxMRIFStKPj7pjzExTicC/tK8eXNt2LBBTz/9tMaNG6fQ0FB98cUXTscCzmKt1ZQpUxQcHKyJEyfqmWeeUWJiotq1aydjjNPxAAAAgHyJQugixcRI3bpJO3ZI1qY/dutGKQTvUqRIEY0ePVorVqxQ8eLF1bp1a3Xs2FF79uxxOhogSYqPj9dtt92mhx9+WEFBQYqLi9PIkSNVtGhRp6MBAAAA+RqF0EXq1086fjzr7Pjx9DngbWrXrq24uDi98cYbmjNnjkJCQjR58mRZa52OBpc6duyYXnjhBd14442Kj4/X+++/r//973+KiIhwOhoAAADgChRCF2nnzgubA04LCAhQv379tHbtWoWFhenRRx9Vs2bNtGXLFqejwUWstZml5IgRI9SlSxclJSXpX//6l3x8+CsJAAAAuFL49H2Rype/sDngLYKDg7VkyRKNGzdOsbGxql69ut58802lpKQ4HQ353Pbt29W6dWvdc889uvrqq/W///1PEydO1LXXXut0NAAAAMB1KIQu0uDBUmBg1llgYPoc8HY+Pj7q3r27EhMT1axZM/Xp00e1a9fW6tWrnY6GfOj06dMaMmSIQkNDtWjRIr355puKi4tT/fr1nY4GAAAAuBaF0EXq3FmKjpYqVJCMSX+Mjk6fA3lFmTJlNGfOHH388cfavXu3br75Zr344os6ceKE09GQTyxatEgRERHq16+fWrRoocTERD333HPy9/d3OhoAAADgahRCl6BzZ2n7diktLf2RMgh5kTFG7dq1U2Jioh5++GENHz5c1atX16JFi5yOhjxsz549evDBB9W4cWOdOnVKX331lWbNmqVy5co5HQ0AAACAKIQAZChevLjef/99ffvtt5Kkxo0b67HHHtPBgwcdToa8JDU1VWPHjlW1atX00UcfqX///oqPj9edd97pdDQAAAAAf0MhBCCLxo0ba926derbt68++OADhYSE6JNPPuEW9TivuLg41a1bV//f3r0HV1Xeaxx/fiSAkRSFksED0zI27YSQBAwEDHIxWEFBh0s1aAQPKmAbHIxYUCmCLRcrUBFRMKUKBRWRMqJwkIuIcoloCKTkHs8wY47ilYJgbBQh7/mD3Yo0kA3sZCV7fT8zGXfWftn70Z9vVniy98o999yjbt26qbCwUDNmzFBUVJTX0QAAAACchkIIwH+4+OKLNXv2bOXm5qpdu3ZKT0/XsGHDdODAAa+joQE6cuSIxo8frx49eujDDz/UihUrtGXLFsXFxXkdDQAAAMAZUAgBOKOuXbsqNzdXc+bM0aZNm9SpUydlZ2erurra62hoAJxzWrFiheLi4rRo0SKNGzdOZWVlysjIkJl5HQ8AAADAWVAIATiryMhITZo0SUVFRUpJSVFmZqbS0tJUXl7udTR4qLy8XP3799eIESP0k5/8RLm5uXrqqad0ySWXeB0NAAAAQBAohAAEJTY2Vlu2bNGSJUtUWFiozp07a9asWTp27JjX0VCPqqqqNHXqVHXu3Fl5eXlatGiR3n33XXXr1s3raAAAAADOQa2FkJldYmYbzGyzma0xs2Zm9pyZ7TKzh09Z9x/HAIQXM9Odd96p0tJSDR06VA8//LBSUlKUm5vrdTTUg9dff10JCQmaOXOmhg8frvLycmVmZioiIsLraAAAAADOUTCvEBohaZ5zboCkTyXdKinCOddT0s/M7Bdm9qvTj9VdZABeu+yyy/Tyyy/rtdde06FDh5SamqoJEyaosrLS62ioAx9++KFuuukm3XDDDWrevLm2bt2q559/Xm3btvU6GgAAAIDzVGsh5Jxb5Jx7I/BpjKSRklYFPt8sqbektBqO/YCZ3W1meWaW98UXX1xobgANwODBg1VSUqLMzEzNnz9fiYmJ2rhxo9exECLfffedHn/8ccXHx2vDhg169NFHtW/fPvXr18/raAAAAAAuUNDXEDKznpJaSfpQ0r9+9/QhSW0ltajh2A845xY751KccykxMTEXFBpAw9GyZUstXLhQO3bsUFRUlAYOHKjbb79dBw8e9DoaLkBOTo66deumiRMnql+/fiouLtbkyZPVrFkzr6MBAAAACIGgCiEzay3pKUl3SaqUFBW4KzrwGDUdA+AjvXv3Vn5+vqZOnaqVK1cqPj5eK1askHPO62g4BwcPHtTo0aPVu3dvffnll1qzZo3Wrl2ryy+/3OtoAAAAAEIomItKN5P0N0mTnXMVkvbo+7eEdZH0wRmOAfCZiy66SNOnT9fevXsVGxurESNG6IYbblBFRYXX0VCL6upqPffcc4qLi9Py5cv1wAMP/Pvi4WbmdTwAAAAAIRbMK3lGS+oqaYqZvS3JJN1uZvMkDZe0XtKrNRwD4FNJSUnKycnRk08+qe3btyshIUELFizQiRMnvI6GGhQUFKhPnz4aM2aMEhISlJ+fr9mzZ6tFixZeRwMAAABQR4K5qPQzzrlWzrm0wMcynbyI9LuS+jnnjjjnjp5+rC5DA2j4IiIidO+996q4uFh9+/ZVVlaWevXqpaKiIq+jIeCrr77S/fffr65du+r999/XX//6V23btk2JiYleRwMAAABQx87rWj/OucPOuVXOuU/PdgwAOnTooPXr1+vFF1/U/v371bVrV02bNk3ffvut19F8yzmn1atXKz4+XvPnz9eYMWNUXl6uUaNG8fYwAAAAwCe4+DOAOmdmuu2221RaWqpbb71VM2bM0BVXXKGdO3d6Hc139u/fr0GDBik9PV0xMTF65513lJ2drdatW3sdDQAAAEA9ohACUG/atGmj5cuXa+PGjaqqqlKfPn00btw4HT161OtoYe/bb7/V9OnTlZCQoJycHM2fP1+7d+9Wamqq19EAAAAAeIBCCEC9u+6661RUVKT77rtP2dnZ6tSpk9auXet1rLC1ZcsWJSUl6ZFHHtHQoUNVVlamrKwsRUZGeh0NAAAAgEcohAB4Ijo6Wk888YR27dql1q1ba8iQIbrlllv02WefeR0tbHz88cfKyMhQ//795ZzTpk2btHLlSrVr187raAAAAAA8RiEEwFNXXnml8vLyNHPmTL366quKj4/X0qVL5ZzzOlqjdfz4cS1YsEAdO3bUmjVr9Pvf/16FhYUaMGCA19EAAAAANBAUQgA816xZM02ZMkX79u1TYmKi7rrrLl177bXav3+/19EandzcXPXo0UNZWVm66qqrVFRUpEceeUQXXXSR19EAAAAANCAUQgAajI4dO+rtt99Wdna28vLylJSUpLlz5+r48eNeR2vwDh8+rN/85jdKTU3VZ599plWrVmnDhg36+c9/7nU0AAAAAA0QhRCABqVJkyb69a9/rZKSEg0YMEAPPPCAevToofz8fK+jNUjOOS1fvlxxcXH6y1/+oqysLJWWlio9PV1m5nU8AAAAAA0UhRCABql9+/Zas2aNVq9erU8++UTdu3fXgw8+qKqqKq+jNRglJSXq16+fRo0apdjYWO3Zs0dPPPGEWrZs6XU0AAAAAA0chRCABsvMdNNNN6mkpER33HGH5syZo6SkJG3dutXraJ76+uuv9dBDD6lLly4qKCjQ4sWLlZOToyuuuMLraAAAAAAaCQohAA1eq1at9Oyzz2rr1q0yM/3yl7/U6NGjdfjwYa+j1bu1a9cqISFBs2fP1siRI1VeXq6xY8eqSRO+nAMAAAAIHn+DANBo9OvXTwUFBXrwwQe1bNkyxcfHa/Xq1b74FfUVFRUaMmSIhgwZoujoaG3fvl1Lly5VTEyM19EAAAAANEIUQgAalaioKD322GPavXu32rdvr/T0dA0bNkwHDhzwOlqdOHbsmB577DHFx8dry5YtmjNnjvLz89WnTx+vowEAAABoxCiEADRKycnJeu+99zR37lxt3rxZnTp1UnZ2tqqrq72OFjLbtm1TcnKyJk+erOuvv16lpaWaNGmSmjZt6nU0AAAAAI0chRCARisyMlITJ05UYWGhunfvrszMTF199dUqKyvzOtoF+fzzzzVq1CilpaXpn//8p9atW6dXXnlFP/3pT72OBgAAACBMUAgBaPRiY2P1xujttdQAAAxaSURBVBtvaOnSpSouLlaXLl00c+ZMHTt2zOto56S6ulrZ2dmKi4vTSy+9pClTpqi4uFg33nij19EAAAAAhBkKIQBhwcx0xx13qLS0VMOGDdPUqVOVkpKi3Nxcr6MFZe/everZs6cyMzOVnJysgoICzZw5UxdffLHX0QAAAACEIQohAGGlbdu2WrlypV577TUdOnRIqampmjBhgiorK72OVqMjR47o3nvvVffu3VVRUaEXXnhBb775pjp27Oh1NAAAAABhjEIIQFgaPHiwSkpKlJmZqfnz5ysxMVEbN270Ota/Oee0cuVKdezYUU8//bQyMzNVVlamESNGyMy8jgcAAAAgzFEIAQhbLVu21MKFC7Vz505FRUVp4MCBuv3223Xw4EFPc73//vsaMGCAMjIy1L59e+Xm5urpp5/WpZde6mkuAAAAAP5BIQQg7PXq1Ut///vfNW3aNL388suKj4/Xiy++KOdcveaoqqrStGnTlJSUpN27d2vhwoV67733lJKSUq85AAAAAIBCCIAvNG/eXH/4wx+0d+9excbGauTIkRo0aJAqKirq5fk3bNigxMREzZgxQ+np6SorK9O4ceMUERFRL88PAAAAAKeiEALgK4mJicrJydGCBQu0Y8cOJSQk6Mknn9SJEyfq5Pk++ugj3XzzzRo0aJCaNm2qN998Uy+88IIuu+yyOnk+AAAAAAgGhRAA34mIiND48eNVXFysvn376r777lOvXr1UVFQUsuc4fvy45s2bp/j4eK1fv16zZs3Svn37dM0114TsOQAAAADgfFEIAfCtDh06aP369VqxYoX279+v5ORkTZs2Td98880FPe4777yjbt266be//a2uvvpqlZSU6He/+52aN28eouQAAAAAcGEohAD4mpkpIyNDpaWlysjI0IwZM5ScnKydO3ee82P94x//0JgxY9SrVy8dOnRIr7zyitatW6fLL7+8DpIDAAAAwPmjEAIASW3atNHy5cu1ceNGVVVVqU+fPho3bpyOHj1a65+trq7WkiVLFBcXp2XLlmnSpEkqLS3VsGHDZGb1kB4AAAAAzg2FEACc4rrrrlNRUZEmTJigP//5z+rUqZPWrl17xvWFhYXq27evRo8erfj4eOXn52vOnDmKjo6ux9QAAAAAcG4ohADgNNHR0Zo3b5527dql1q1ba8iQIRo+fLg+/fTTf6+prKzUxIkTlZycrLKyMi1ZskTbtm1TYmKih8kBAAAAIDjmnKv3J01JSXF5eXn1/rwAcK6+++47zZ07V9OnT1dUVJQef/xxXXrppcrKytJHH32ksWPH6o9//KN+/OMfex0VAAAAgM+Z2R7nXEpQaymEAKB25eXluvvuu7V9+3ZJUpcuXfTMM8+oZ8+eHicDAAAAgJPOpRCKrOswABAO4uLi9NZbb2nZsmX65ptvNHbsWEVG8iUUAAAAQOPE32YAIEhNmjTRnXfe6XUMAAAAALhgXFQaAAAAAADAZyiEAAAAAAAAfIZCCAAAAAAAwGcohAAAAAAAAHyGQggAAAAAAMBnKIQAAAAAAAB8JqhCyMzamtmOwO2mZrbOzHLM7K4zHQMAAAAAAEDDVGshZGatJC2T1CJwaLykPc65XpJuNrMfneEYAAAAAAAAGqBgXiF0QtItko4GPk+TtCpwe7uklDMc+wEzu9vM8sws74svvriAyAAAAAAAALgQtRZCzrmjzrkjpxxqIelA4PYhSW3PcOz0x1nsnEtxzqXExMRcWGoAAAAAAACct/O5qHSlpKjA7ejAY9R0DAAAAAAAAA3Q+RQ3eyT1DtzuIumDMxwDAAAAAABAAxR5Hn9mmaTXzayPpE6S3tPJt4udfgwAAAAAAAANUNCvEHLOpQX+WSGpv6QcSdc6507UdKwOsgIAAAAAACAEzucVQnLOfazvf6vYGY8BAAAAAACg4eHizwAAAAAAAD5DIQQAAAAAAOAzFEIAAAAAAAA+QyEEAAAAAADgMxRCAAAAAAAAPkMhBAAAAAAA4DMUQgAAAAAAAD5DIQQAAAAAAOAzFEIAAAAAAAA+QyEEAAAAAADgMxRCAAAAAAAAPkMhBAAAAAAA4DMUQgAAAAAAAD5DIQQAAAAAAOAzFEIAAAAAAAA+QyEEAAAAAADgMxRCAAAAAAAAPkMhBAAAAAAA4DMUQgAAAAAAAD5DIQQAAAAAAOAzFEIAAAAAAAA+QyEEAAAAAADgMxRCAAAAAAAAPkMhBAAAAAAA4DMUQgAAAAAAAD5DIQQAAAAAAOAzFEIAAAAAAAA+QyEEAAAAAADgMxRCAAAAAAAAPkMhBAAAAAAA4DMUQgAAAAAAAD5DIQQAAAAAAOAzFEIAAAAAAAA+QyEEAAAAAADgMxRCAAAAAAAAPkMhBAAAAAAA4DMUQgAAAAAAAD5DIQQAAAAAAOAzFEIAAAAAAAA+QyEEAAAAAADgMyEthMzsOTPbZWYPh/JxAQAAAAAAEDohK4TM7FeSIpxzPSX9zMx+EarHBgAAAAAAQOhEhvCx0iStCtzeLKm3pP/9151mdrekuwOfVppZeQif22ttJB30OgTqHXP3L2bvX8zen5i7fzF7/2L2/sTc/SucZt8h2IWhLIRaSDoQuH1IUtdT73TOLZa0OITP12CYWZ5zLsXrHKhfzN2/mL1/MXt/Yu7+xez9i9n7E3P3L7/OPpTXEKqUFBW4HR3ixwYAAAAAAECIhLK02aOTbxOTpC6SPgjhYwMAAAAAACBEQvmWsVcl7TCzdpIGSkoN4WM3dGH5VjjUirn7F7P3L2bvT8zdv5i9fzF7f2Lu/uXL2ZtzLnQPZtZKUn9J251zn4bsgQEAAAAAABAyIS2EAAAAAAAA0PBx4WcAAAAAvmNmrc2sv5m18ToL6hezB06iEDoHZvacme0ys4cvZA0al9pmamaRZvZ/ZvZ24COpvjOibphZWzPbcZb7m5rZOjPLMbO76jMb6lYQs29vZh+dsu9j6jMfQs/MLjGzDWa22czWmFmzM6zjPB9mgpk95/rwE7jUxf9I6iHprTN9HWfPh59gZs+eD2+B7/Pyz3K/b/Y9hVCQzOxXkiKccz0l/czMfnE+a9C4BDnTzpJecs6lBT4K6zcl6kLgm4VlklqcZdl4SXucc70k3WxmP6qXcKhTQc7+SkmzTtn3X9RPOtShEZLmOecGSPpU0vWnL+A8H7Zqnb0414ejzpLud87NkrRJUtfTF7Dnw1atsxd7Ptz9SVJUTXf4bd9TCAUvTdKqwO3Nknqf5xo0Lmmqfaapkm40s9xAmxzK394H75yQdIuko2dZk6bv///YLimljjOhfgQz+1RJY8xsr5k9Wj+xUJecc4ucc28EPo2R9HkNy9LEeT7sBDl7zvVhxjm3zTn3rpn11clXiuyqYVma2PNhJ8jZs+fDlJldI+lrnfwBQE3S5KN9TyEUvBaSDgRuH5LU9jzXoHEJZqa7JV3rnOshqamkQfWUDXXIOXfUOXeklmXs+TAU5Ow36OQ3DN0l9TSzznUeDPXCzHpKauWce7eGu9nzYayW2XOuD0NmZjr5A4DDkr6rYQl7PkwFMXv2fBgKvCV4qqSHzrLMV/ueQih4lfr+ZWXRqvm/XTBr0LgEM9MC59wngdt5ksL6ZYX4Afa8f73jnPvKOXdCUr7Y92HBzFpLekrSma4Jxp4PU0HMnnN9GHIn3SOpQNLgGpaw58NUELNnz4enhyQtcs59eZY1vtr3Yf0vF2J79P3LxbpI+uA816BxCWamz5tZFzOLkDRU0r56ygbvsef9a5OZ/ZeZXSxpgKQirwPhwgR+avg3SZOdcxVnWMaeD0NBzp5zfZgxswfN7L8Dn14qqaa/ILLnw1CQs2fPh6drJd1jZm9LusLMnq1hja/2vTnnvM7QKJhZS0k7JL0paaCkWyWlO+cePsua1CDedoAGLMi5J0paIckkrXXOTfEiK+qGmb3tnEsLvN+4k3Pu6VPu6yDpdUlbJF2lk3v+hEdREWK1zL6fpGckHZO0+NT70DiZWaakR/X9N/1vSWrKeT78BTl7zvVhJvALBFZJaq6Tpf5CSRns+fAX5OzZ82EuUAqNk3Sbn/c9hdA5CHzx6C9pu3OuxotQBbMGjQszxdmYWTud/CnCpnA+WQA4iXMC4C/secB//LTvKYQAAAAAAAB8hmsIAQAAAAAA+AyFEAAAAAAAgM9QCAEAAAAAAPgMhRAAAAAAAIDPUAgBAAAAAAD4zP8DLSHOS0lMJL0AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1440x576 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# 散点图 和 折线图 可以画在一起\n", "plt.figure(figsize=(20,8))\n", "y标签 = range(1000)\n", "plt.scatter(x, y1,color='b')\n", "plt.plot(x,y2,color='k')\n", "plt.yticks(y标签[::100])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 直方图\n", " 体现概率分布" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "[17.298770987479372,\n", " 87.90853718716247,\n", " 57.449784594603294,\n", " 26.747074739170905,\n", " 40.10332661126795,\n", " 47.42637617702843,\n", " 12.854683200037641,\n", " 45.76491093353873,\n", " 18.90874629224878,\n", " 32.75189363142821,\n", " 79.5909123911098,\n", " 93.03530900168991,\n", " 19.01722195522424,\n", " 1.014261926347415,\n", " 4.071404804510137,\n", " 17.989939484939864,\n", " 11.279986044778168,\n", " 35.33573034411571,\n", " 12.929151880869416,\n", " 80.75423233741937,\n", " 63.5881116196127,\n", " 15.261558798270226,\n", " 5.918936058958302,\n", " 13.757300969712482,\n", " 69.32300432692779,\n", " 80.078248124356,\n", " 39.102314782863075,\n", " 65.76731513158605,\n", " 45.797385627494215,\n", " 92.06059963494512,\n", " 46.7375855496356,\n", " 92.07321313597645,\n", " 55.883565102273934,\n", " 66.1235040461722,\n", " 57.15954252663734,\n", " 29.647857853650038,\n", " 87.82317317702957,\n", " 35.83836389081022,\n", " 29.835672776059685,\n", " 79.7290927503379,\n", " 88.10316457140634,\n", " 52.11849456913309,\n", " 10.686263363122228,\n", " 54.298509072361334,\n", " 54.29276318345838,\n", " 19.911000536570022,\n", " 54.99279343515222,\n", " 16.01167588305026,\n", " 40.870710257592556,\n", " 32.17961880462672,\n", " 84.83453356020816,\n", " 94.44117601288586,\n", " 66.39706549422624,\n", " 46.87717214476547,\n", " 59.50250579378359,\n", " 61.77397488108204,\n", " 35.175920037183076,\n", " 62.05828677236348,\n", " 12.713507384141142,\n", " 71.45571418419088,\n", " 12.618568516991369,\n", " 61.76006480269386,\n", " 94.4097107973083,\n", " 84.14060643475041,\n", " 92.98777649744684,\n", " 93.73772545782033,\n", " 38.02720424507977,\n", " 4.369356322070317,\n", " 55.109807875879255,\n", " 4.42570528095696,\n", " 39.29451602409099,\n", " 50.86190731236528,\n", " 29.15665333873696,\n", " 41.19164122590633,\n", " 50.80800245581001,\n", " 51.20010146905012,\n", " 6.9817015008266985,\n", " 48.86994086615957,\n", " 11.34356074718773,\n", " 95.9130526727369,\n", " 80.60844811786075,\n", " 94.52403544191085,\n", " 53.37956402382487,\n", " 15.410416502140144,\n", " 28.907337391009047,\n", " 10.67427338598048,\n", " 8.955810799384189,\n", " 54.225082256439535,\n", " 40.60469460927458,\n", " 69.01254085717824,\n", " 85.94817755267471,\n", " 14.812319406157703,\n", " 14.362679388519084,\n", " 47.54742022350465,\n", " 76.9149274310848,\n", " 12.853836682082786,\n", " 69.01219620476594,\n", " 92.8817739102533,\n", " 96.62352729954624,\n", " 80.96162821582872,\n", " 64.4996115033468,\n", " 91.858795958594,\n", " 47.1527681414849,\n", " 81.0075116046103,\n", " 49.84431744379195,\n", " 79.95187116298281,\n", " 84.6731213525361,\n", " 54.5314264935156,\n", " 47.70240600309074,\n", " 20.36008693788256,\n", " 33.36928407901735,\n", " 12.573585574587176,\n", " 21.21049143226078,\n", " 26.069544888241523,\n", " 84.01429238703136,\n", " 7.011960021074959,\n", " 23.914846824963256,\n", " 68.63299096579404,\n", " 95.61557145719958,\n", " 68.94923775546454,\n", " 16.106929363876343,\n", " 80.52091459802352,\n", " 87.07026882031667,\n", " 3.0037293581150926,\n", " 73.81626595991652,\n", " 90.99006557617868,\n", " 25.987043785392327,\n", " 77.26264865742051,\n", " 76.70862172284635,\n", " 26.40442802636429,\n", " 25.428920360203477,\n", " 61.009730612308424,\n", " 76.04781764110294,\n", " 97.80071105457444,\n", " 35.243683455444256,\n", " 3.572454722262852,\n", " 97.44449019227626,\n", " 57.08862230199338,\n", " 43.428739816602636,\n", " 60.87808883137799,\n", " 77.86616183632886,\n", " 24.237627052919997,\n", " 37.412518874083865,\n", " 44.06875911022844,\n", " 44.353245650773054,\n", " 12.472783233198149,\n", " 34.80846877908246,\n", " 93.1971310048975,\n", " 90.57321179654116,\n", " 89.9847275981337,\n", " 13.844705863590189,\n", " 52.259973918071665,\n", " 51.26126203126734,\n", " 78.62777159224932,\n", " 10.652547304505411,\n", " 60.560847831673904,\n", " 37.65941472814114,\n", " 46.80750971778191,\n", " 25.307402700103744,\n", " 25.28022809430771,\n", " 27.237267568075872,\n", " 58.41302349602664,\n", " 50.2998685041775,\n", " 28.4182363773839,\n", " 83.44841288423346,\n", " 8.269945683944325,\n", " 20.58556434895351,\n", " 77.53166932417317,\n", " 65.18545493058583,\n", " 70.50331521518687,\n", " 82.79265489836776,\n", " 16.85271555748107,\n", " 36.729940531423885,\n", " 30.88765164935766,\n", " 43.81942714271545,\n", " 45.45271388556466,\n", " 22.527804410167796,\n", " 44.42381801856436,\n", " 90.79420541987105,\n", " 62.583758799482695,\n", " 42.222938061413686,\n", " 44.08868789527295,\n", " 96.25916542968524,\n", " 76.79799991179515,\n", " 68.27273018799157,\n", " 42.479755931971475,\n", " 41.6215822410497,\n", " 77.96026185376566,\n", " 34.873795115147466,\n", " 1.5562467999644225,\n", " 87.88681914772147,\n", " 4.255095183776891,\n", " 60.1966862471812,\n", " 64.51084958184876,\n", " 86.23437256430286,\n", " 90.24625044508576,\n", " 28.859117277583067,\n", " 66.06239658699434,\n", " 44.15604169865731,\n", " 38.73175842204287,\n", " 21.613167276029067,\n", " 17.669395336408645,\n", " 67.1524729654817,\n", " 33.54611501698712,\n", " 26.779254934621033,\n", " 65.62679298021786,\n", " 93.17456425774989,\n", " 58.64373104162106,\n", " 17.094872609800383,\n", " 60.592185332040785,\n", " 44.141201766501325,\n", " 10.085107711301145,\n", " 0.29436194395027204,\n", " 14.622913603881093,\n", " 4.271779501003003,\n", " 56.58438555523693,\n", " 32.08758369850241,\n", " 18.175716832626154,\n", " 99.98287319185309,\n", " 58.28359141922187,\n", " 38.85385809596266,\n", " 68.18545897427704,\n", " 31.006448395168597,\n", " 10.0671246419338,\n", " 13.177860012524478,\n", " 39.64626082199795,\n", " 93.86163365413323,\n", " 25.803048716920518,\n", " 38.643065273598744,\n", " 50.62111433612698,\n", " 1.8254301063162393,\n", " 16.132866037611315,\n", " 97.9195600706271,\n", " 76.05241532307683,\n", " 33.504146495725806,\n", " 8.27964472039222,\n", " 81.6922652965148,\n", " 13.359241220358697,\n", " 73.58830833044186,\n", " 12.15127656065994,\n", " 11.924153848006004,\n", " 44.96348698936994,\n", " 58.665523385327404,\n", " 56.15417191782653,\n", " 47.92679220017122,\n", " 13.95999977097998,\n", " 34.52647742519039,\n", " 2.550723695508439,\n", " 72.52830989786858,\n", " 20.229743941582235,\n", " 99.66292796886552,\n", " 72.37838863956702,\n", " 78.20185581464814,\n", " 87.79361256802166,\n", " 65.75212956525877,\n", " 93.14335802723976,\n", " 77.90604324058611,\n", " 72.18177411045855,\n", " 34.600989937687665,\n", " 82.36812152086263,\n", " 89.39001860115951,\n", " 73.12560891421164,\n", " 19.080189384178713,\n", " 40.743023752282234,\n", " 48.14898277939822,\n", " 48.19892908874568,\n", " 87.20503132456199,\n", " 95.56094821800704,\n", " 60.550504585566486,\n", " 68.77423211842412,\n", " 52.4423114777305,\n", " 39.13715730992943,\n", " 7.300461226110178,\n", " 55.680837363910484,\n", " 6.788773836461681,\n", " 88.45305176575896,\n", " 87.95663953509425,\n", " 69.23901338143321,\n", " 15.687801050685145,\n", " 79.24596473015269,\n", " 19.894596740829616,\n", " 10.811852928058185,\n", " 83.90255234383775,\n", " 97.41443647504528,\n", " 12.825391234219152,\n", " 28.938162694490387,\n", " 70.42128246886118,\n", " 9.789849703473074,\n", " 75.9753298862724,\n", " 42.91370113235532,\n", " 13.854132930576558,\n", " 14.441880071409885,\n", " 52.992886752831616,\n", " 7.446086861773749,\n", " 28.16125426667877,\n", " 76.66236732237657,\n", " 59.602259738580464,\n", " 21.25953313377178,\n", " 65.03573446840588,\n", " 79.51075579930175,\n", " 2.792243988567611,\n", " 75.0037946317845,\n", " 33.5791397174752,\n", " 95.00640295236302,\n", " 36.99665784616799,\n", " 85.23163979295293,\n", " 99.82522238010371,\n", " 68.61253123815364,\n", " 14.435541747365688,\n", " 4.628033644741936,\n", " 27.21639573301967,\n", " 58.25305099499736,\n", " 5.407658035317953,\n", " 18.276368500501516,\n", " 90.09198289283069,\n", " 80.1361710821183,\n", " 65.51025168446239,\n", " 30.002869922493446,\n", " 46.54415648510821,\n", " 63.307507166422496,\n", " 26.268979453769248,\n", " 22.813846867203857,\n", " 82.10334518781993,\n", " 87.71778109383058,\n", " 75.52401079805978,\n", " 80.33343516828832,\n", " 27.581043362958578,\n", " 89.07991472357557,\n", " 16.631923785524027,\n", " 74.13836497007418,\n", " 25.492157636087022,\n", " 29.990911307045444,\n", " 12.461668613446786,\n", " 28.884460753640894,\n", " 52.44876368902827,\n", " 77.57222464931989,\n", " 64.19079280939313,\n", " 16.460701846551864,\n", " 99.89184352644969,\n", " 89.13364075191677,\n", " 43.031656191286515,\n", " 28.69355775580773,\n", " 88.64285581523708,\n", " 6.223626200936893,\n", " 59.623097265351696,\n", " 81.76546989448086,\n", " 71.14754285066567,\n", " 11.360401666909791,\n", " 48.26177687181223,\n", " 10.706086897990119,\n", " 29.59965131494695,\n", " 5.700233282396317,\n", " 36.966574359908066,\n", " 67.39945085236832,\n", " 40.91523766399826,\n", " 5.775848193802469,\n", " 82.67847705243466,\n", " 63.868772206255265,\n", " 52.83576766089271,\n", " 84.4583300726242,\n", " 8.854709850449183,\n", " 51.48907415216688,\n", " 8.043263290215174,\n", " 35.529651857954725,\n", " 38.8332675549296,\n", " 11.386640653904422,\n", " 11.35806328674449,\n", " 55.85105049832488,\n", " 3.486190433265668,\n", " 25.840676315233136,\n", " 20.80574796416007,\n", " 84.186962899162,\n", " 12.861043817795858,\n", " 95.41504097973042,\n", " 38.41514995345208,\n", " 44.424147802474266,\n", " 81.02871827737596,\n", " 33.29714264191569,\n", " 53.94313936906811,\n", " 65.27799861179082,\n", " 56.637998577116676,\n", " 87.93402478670903,\n", " 82.51222261411911,\n", " 73.06824353229847,\n", " 92.90579635249273,\n", " 96.15658933665468,\n", " 69.51684526879238,\n", " 95.00601042007638,\n", " 96.15461983297713,\n", " 11.158565773306762,\n", " 36.754394003175804,\n", " 53.62049820911391,\n", " 62.10384590702627,\n", " 40.721148029528706,\n", " 91.95479744690047,\n", " 57.60647866410237,\n", " 29.179835402047672,\n", " 10.70811175787102,\n", " 73.63458927567146,\n", " 70.31869735723092,\n", " 53.07310535378846,\n", " 57.47286040457602,\n", " 42.070506517666786,\n", " 57.18083734464211,\n", " 89.02787377374646,\n", " 6.241192628229331,\n", " 46.4299562878682,\n", " 34.76688427596471,\n", " 39.22734733462141,\n", " 36.694370616084825,\n", " 75.42848015570046,\n", " 47.02095170722623,\n", " 1.4242891299166338,\n", " 84.15537885835325,\n", " 30.736820875777006,\n", " 38.011695491317795,\n", " 45.879858787365734,\n", " 85.00634523247362,\n", " 71.85476116712803,\n", " 12.42890780866035,\n", " 8.587236416651244,\n", " 20.1784700613711,\n", " 99.85667213734972,\n", " 78.22898684209987,\n", " 25.897664222028794,\n", " 79.56880367934346,\n", " 36.60300570270113,\n", " 25.02766236937117,\n", " 94.25115166989542,\n", " 33.842172668040895,\n", " 82.59683229146137,\n", " 91.68582368684933,\n", " 2.638683611676873,\n", " 77.04378464027769,\n", " 32.949615656871856,\n", " 49.05031058382778,\n", " 39.57538621335124,\n", " 29.784135384008792,\n", " 94.0534473592846,\n", " 60.30797525042186,\n", " 36.9409678601407,\n", " 32.41588650466478,\n", " 92.75850465576792,\n", " 11.37034475388845,\n", " 86.90792853628444,\n", " 93.09404610965696,\n", " 38.926243613845614,\n", " 69.70633475868372,\n", " 55.48102408668968,\n", " 94.08137958784395,\n", " 67.33836463897566,\n", " 86.89148934321955,\n", " 19.92054319444565,\n", " 0.4353901575577357,\n", " 31.546569525424584,\n", " 90.24139175528636,\n", " 79.43107327327645,\n", " 1.9416390168977338,\n", " 78.96608790322036,\n", " 63.614145317813595,\n", " 8.051201771073691,\n", " 30.669738321095007,\n", " 27.782856296591095,\n", " 60.54544973519829,\n", " 20.7968676502823,\n", " 20.569155243103864,\n", " 37.31032662745134,\n", " 19.619129038737537,\n", " 40.53298222190098,\n", " 38.33512740867215,\n", " 7.756533283693345,\n", " 46.67586173475639,\n", " 8.098506624178137,\n", " 29.24912513936089,\n", " 3.0266026828391412,\n", " 94.7070112545042,\n", " 5.420431295875449,\n", " 60.42224739276292,\n", " 15.938563322574307,\n", " 87.64685175638988,\n", " 45.5187516239218,\n", " 40.47200610627038,\n", " 67.8405402038433,\n", " 62.9767985409449,\n", " 8.812926746972938,\n", " 75.35886375205472,\n", " 18.35623241702171,\n", " 37.012135298379064,\n", " 64.77492022822244,\n", " 59.98809525275261,\n", " 63.6036976270942,\n", " 80.27846000979262,\n", " 59.94374817394797,\n", " 0.9604227733570614,\n", " 12.958827756712822,\n", " 15.832603391023936,\n", " 2.759380565709557,\n", " 12.7639271924762,\n", " 56.552272968690275,\n", " 46.214747541134116,\n", " 43.869815396204956,\n", " 95.56735490389526,\n", " 71.07320686134565,\n", " 44.869236611302945,\n", " 45.20799683696294,\n", " 73.24250148046337,\n", " 63.17540075009978,\n", " 22.154722440220343,\n", " 52.136517068531916,\n", " 86.10357813368748,\n", " 59.86245712904322,\n", " 21.610668246876862,\n", " 83.8696038105853,\n", " 61.88114174545915,\n", " 84.84123548951925,\n", " 93.81657709653156,\n", " 84.74446245607777,\n", " 59.95156557696465,\n", " 96.0807593646935,\n", " 62.665434585468596,\n", " 85.47270722523766,\n", " 38.509361139656036,\n", " 90.72943766683157,\n", " 13.403721912996314,\n", " 29.521433619425096,\n", " 81.80427938198021,\n", " 80.11349487986001,\n", " 84.89311787697783,\n", " 44.951779101683066,\n", " 18.56070370546564,\n", " 48.49257450034528,\n", " 55.27324366009506,\n", " 22.852548028554597,\n", " 80.89193803110606,\n", " 47.670332519014465,\n", " 35.29489575080505,\n", " 74.59360482374429,\n", " 28.653617989604076,\n", " 71.06354388627412,\n", " 98.86841195355574,\n", " 72.73825460123355,\n", " 83.20613946572072,\n", " 16.81578154697033,\n", " 58.58439557908686,\n", " 59.34314511614945,\n", " 1.3825441555722295,\n", " 88.24954995222413,\n", " 10.824499898629924,\n", " 93.52929398311295,\n", " 60.53969559897497,\n", " 86.72987231233199,\n", " 53.13450384298062,\n", " 86.35920938047951,\n", " 33.690841581403795,\n", " 80.55501176788974,\n", " 74.30186699298098,\n", " 67.45351770818601,\n", " 50.24276206797623,\n", " 98.97869537561913,\n", " 15.225463671642869,\n", " 63.92369254290367,\n", " 16.207544266560948,\n", " 92.32164469189985,\n", " 5.503364947641199,\n", " 8.033446460102367,\n", " 88.81657051951431,\n", " 73.96401704258956,\n", " 63.35874718900054,\n", " 27.04601446890944,\n", " 68.12203006085201,\n", " 89.34176658498761,\n", " 48.26635464712747,\n", " 89.20604808090886,\n", " 68.01286532358345,\n", " 47.5623126183508,\n", " 65.74883996608509,\n", " 32.119776063391136,\n", " 81.48667303370739,\n", " 56.9173322051241,\n", " 20.453632794913766,\n", " 84.1336735287314,\n", " 73.26783572170656,\n", " 32.98645821636248,\n", " 70.80350661835323,\n", " 79.5253445524015,\n", " 77.10455949157591,\n", " 82.34537822717724,\n", " 80.7257375204742,\n", " 17.960189300969496,\n", " 0.9029678031524657,\n", " 9.191525492328944,\n", " 97.82085578345868,\n", " 44.45044191189067,\n", " 76.29036708112201,\n", " 2.667563225398484,\n", " 56.097470902601756,\n", " 11.451752886764343,\n", " 79.60843048059962,\n", " 42.606546629721876,\n", " 65.07949488652723,\n", " 23.993635193639516,\n", " 74.49149645906569,\n", " 27.41629844108062,\n", " 5.5843942527085915,\n", " 77.0703135372352,\n", " 46.70063956236214,\n", " 19.981819873583074,\n", " 96.22159116594875,\n", " 62.94744489227506,\n", " 88.79607182342886,\n", " 31.240520053205856,\n", " 37.98407124767991,\n", " 88.93905034109957,\n", " 17.00896609924221,\n", " 65.74178641695939,\n", " 68.4583093819962,\n", " 54.34950353713015,\n", " 16.296640773563865,\n", " 75.5606037139786,\n", " 24.781534373359914,\n", " 43.75204066418979,\n", " 65.5728231207988,\n", " 70.72667834005519,\n", " 46.140942679505315,\n", " 39.855663686624254,\n", " 57.71122371095241,\n", " 77.73773283490848,\n", " 19.34642502874905,\n", " 9.777470393240517,\n", " 40.475602564136146,\n", " 52.71887016576638,\n", " 32.07188094576075,\n", " 32.81271188161307,\n", " 93.36322701205633,\n", " 86.16036874261168,\n", " 90.18201682031197,\n", " 51.90668165005036,\n", " 76.11123567576307,\n", " 4.01398400016274,\n", " 43.05862677928507,\n", " 29.22067227123054,\n", " 22.305513749927165,\n", " 51.9571978093868,\n", " 10.193698942938356,\n", " 44.67257673727506,\n", " 61.919356928088156,\n", " 3.5801894297574965,\n", " 23.726394646688465,\n", " 61.13140236812736,\n", " 78.51238215460552,\n", " 62.6197714210907,\n", " 59.64213329205472,\n", " 60.3219019438494,\n", " 26.75223410701938,\n", " 99.01430872391221,\n", " 62.91438577280327,\n", " 8.03904919229831,\n", " 17.943593305950156,\n", " 61.50228172703457,\n", " 12.680422713393646,\n", " 19.41343871927341,\n", " 33.53740428557226,\n", " 23.474989582448437,\n", " 40.65321564329179,\n", " 83.50126593776986,\n", " 48.2267658050667,\n", " 81.16932153964672,\n", " 67.1758496492151,\n", " 99.40276610864703,\n", " 10.184903955972757,\n", " 47.369691420971314,\n", " 89.62540942882264,\n", " 74.30497489646899,\n", " 22.633332728135656,\n", " 1.5292756254144169,\n", " 26.574707883951376,\n", " 4.343539408823993,\n", " 16.0874836678497,\n", " 56.51035897873938,\n", " 10.127769473173466,\n", " 84.8808985544758,\n", " 20.585476338016605,\n", " 8.817504493645934,\n", " 62.62364928826463,\n", " 59.31017661352394,\n", " 44.31001352786694,\n", " 69.91978877622678,\n", " 17.805085164970833,\n", " 5.949566432164444,\n", " 39.42857225719869,\n", " 52.12238028086369,\n", " 96.8714747592676,\n", " 30.61024960802452,\n", " 36.602339218975054,\n", " 32.25286719940231,\n", " 99.73311715269725,\n", " 25.518045513491682,\n", " 55.44299440760672,\n", " 85.90097059540015,\n", " 18.16521585675961,\n", " 26.66128961059706,\n", " 32.30364332943789,\n", " 74.89479837439286,\n", " 92.54509460901639,\n", " 60.73724206010503,\n", " 88.66643997084098,\n", " 46.66679222039776,\n", " 1.810567531144902,\n", " 39.58159544455786,\n", " 58.15048096372,\n", " 93.03518201829951,\n", " 82.26579624037385,\n", " 32.81033645479735,\n", " 17.65481849717352,\n", " 92.573767402148,\n", " 71.54061548601744,\n", " 6.39420683756472,\n", " 55.144492951077325,\n", " 70.36770055771908,\n", " 22.956072418753482,\n", " 72.34255084795426,\n", " 40.78702551062352,\n", " 37.36857702229541,\n", " 5.4522329702158085,\n", " 8.54205963511384,\n", " 22.920955065712167,\n", " 61.792999406739725,\n", " 2.4344843726278875,\n", " 10.141272040912641,\n", " 75.09435940533542,\n", " 58.49005860818524,\n", " 60.29693772562358,\n", " 49.06782136786859,\n", " 54.2680402803026,\n", " 69.13939988348933,\n", " 94.00757839854266,\n", " 1.735376726447524,\n", " 96.20211645408344,\n", " 4.101671930604011,\n", " 88.78314260485325,\n", " 54.137304831534706,\n", " 93.4584125129816,\n", " 8.480726320788746,\n", " 26.69515965251762,\n", " 44.16489604628174,\n", " 44.61306716207653,\n", " 2.2983056231276167,\n", " 13.185950087658316,\n", " 97.1562937984738,\n", " 44.0677522009217,\n", " 10.324033384227494,\n", " 62.756996154783906,\n", " 39.85659139721762,\n", " 96.19785086418288,\n", " 33.47165698253358,\n", " 77.5258526433073,\n", " 68.10946230852385,\n", " 71.77693924662975,\n", " 45.32389830317244,\n", " 1.1752144319579827,\n", " 26.128393119151927,\n", " 67.60947777527274,\n", " 91.50336693378311,\n", " 72.54472366170084,\n", " 45.63846778615617,\n", " 90.35423960113258,\n", " 88.65183285004406,\n", " 5.770497715993472,\n", " 5.947922047947585,\n", " 85.99439393778438,\n", " 41.14512433471115,\n", " 13.503897864084335,\n", " 3.576705058769636,\n", " 4.395390323818127,\n", " 2.065176176899275,\n", " 52.41849200420828,\n", " 8.155797001305764,\n", " 33.09741648854684,\n", " 35.11636203363987,\n", " 74.0835090059825,\n", " 28.66177762426484,\n", " 24.84120327640139,\n", " 5.405634695592165,\n", " 6.386802383898971,\n", " 0.7294792208922485,\n", " 70.01878709423227,\n", " 63.27989975425384,\n", " 27.886966072027786,\n", " 24.892280325800986,\n", " 14.533853576673938,\n", " 19.43433860182453,\n", " 48.77881103072039,\n", " 76.96691480608018,\n", " 52.84983065359498,\n", " 45.99878468385781,\n", " 50.768747830276965,\n", " 67.40038508483111,\n", " 74.74254081204244,\n", " 18.259287317177364,\n", " 81.04508761872138,\n", " 15.783561218137788,\n", " 35.13606714634635,\n", " 34.357064326618534,\n", " 34.95638309747636,\n", " 46.958202807503014,\n", " 11.61381848092814,\n", " 71.97353034990007,\n", " 80.22591279858409,\n", " 42.63959674734641,\n", " 87.746388862794,\n", " 90.96621201731458,\n", " 23.820450349025577,\n", " 31.841942068086972,\n", " 44.03893481010107,\n", " 89.72642590661886,\n", " 6.457327637924692,\n", " 73.45773260228114,\n", " 54.08291642987633,\n", " 33.01463265967968,\n", " 51.95599406314238,\n", " 7.607134000054449,\n", " 74.80394784496181,\n", " 17.638377280485074,\n", " 49.90771710608467,\n", " 20.568722268886486,\n", " 27.373458208101997,\n", " 29.34710724946551,\n", " 0.8272447615531475,\n", " 34.7801458368332,\n", " 99.08720278845405,\n", " 95.05738406824119,\n", " 27.828961885991323,\n", " 33.80025407999203,\n", " 98.98482541068492,\n", " 30.871569180413726,\n", " 54.42849138118743,\n", " 56.9923177031067,\n", " 83.50609400890681,\n", " 53.72702570320938,\n", " 98.27633175799242,\n", " 9.230550268666404,\n", " 15.704042098079185,\n", " 80.32519614854453,\n", " 71.11727355274711,\n", " 80.17891794844776,\n", " 55.794776643059464,\n", " 37.18434821041262,\n", " 93.3276980739656,\n", " 38.47856634044241,\n", " 29.595947582277915,\n", " 49.875995948252736,\n", " 63.893103788220586,\n", " 11.248076351502744,\n", " 22.353500236466985,\n", " 60.50491673711763,\n", " 69.00532732696841,\n", " 11.831902960557128,\n", " 54.11164047049042,\n", " 23.600249894955304,\n", " 71.29396576810112,\n", " 73.13730168249025,\n", " 57.93793721637156,\n", " 35.126934967489454,\n", " 42.07166272806477,\n", " 24.588248399954814,\n", " 45.50376612912343,\n", " 23.03500223211754,\n", " 48.33958666567453,\n", " 56.38685104721376,\n", " 63.743114017319755,\n", " 86.06088596382924,\n", " 77.99567669655306,\n", " 81.04304034246908,\n", " 51.28079362188659,\n", " 9.869338954037065,\n", " 96.19273727801615,\n", " 55.4313681107915,\n", " 67.49951356905963,\n", " 45.57822457391574,\n", " 35.02284905065637,\n", " 55.16121785343866,\n", " 8.165597587326456,\n", " 91.54281523517949,\n", " 50.49924741308458,\n", " 5.305090173516803,\n", " 63.71454711813247,\n", " 22.020951227281905,\n", " 96.64996918431449,\n", " 85.9311958975365,\n", " 13.241142446371034,\n", " 3.8738642952675373,\n", " 44.59075945421329,\n", " 55.1513554410764,\n", " 55.19034413941718,\n", " 37.885014045114765,\n", " 87.4958369332867,\n", " 14.421297989330096,\n", " 25.720171297309314,\n", " 3.1504592742355175,\n", " 28.582711944043915,\n", " 55.68550225990584,\n", " 57.65076286824994,\n", " 88.6403679791992,\n", " 13.864152689553366,\n", " 60.30736948315555,\n", " 14.130941931106511,\n", " 74.35885205289317,\n", " 21.499848982634017,\n", " 34.52759247223727,\n", " 28.947342154989208,\n", " 32.20909804564951,\n", " 54.5159713104699,\n", " 71.03660997061206,\n", " 98.1269570440202,\n", " 4.555678988710044,\n", " 78.8432538743689,\n", " 86.45240363251689,\n", " 63.09519052909527,\n", " 71.72419811201193,\n", " 96.30035720686195,\n", " 78.62416207747707,\n", " 35.87654809649017,\n", " 25.317310830309804,\n", " 75.12528700323445,\n", " 91.91871226228733,\n", " 29.806399412964836,\n", " 57.56906915781498,\n", " 54.92721993113776,\n", " 6.168031269649388,\n", " 40.37116217976487,\n", " 55.01769751051284,\n", " 77.38611962792181,\n", " 59.71891499911497,\n", " 34.88726281301506,\n", " 12.202452576513723,\n", " 9.721105097080795,\n", " 96.55739273144263,\n", " 47.640401672211254,\n", " 59.928773572798136,\n", " 47.78125096735559,\n", " 3.0452503615583937,\n", " 45.93057450507412,\n", " 97.85308845835776,\n", " 66.52223280318626,\n", " 76.28172378507475,\n", " 16.488058334239298,\n", " 87.4992312309988,\n", " 14.863355981724979,\n", " 88.66056463482938,\n", " 62.20973585484471,\n", " 1.0027852563390893,\n", " 7.725388730671101,\n", " 89.36506484106255,\n", " 53.78816600304099,\n", " 30.624926590878378,\n", " 77.02282677341532,\n", " 51.50052334257119,\n", " 81.5897452980825,\n", " 28.561234598741482,\n", " 96.27210369752135,\n", " 87.61205898783071,\n", " 74.58834162728503,\n", " 15.421720575193309,\n", " 76.91953701569709,\n", " 89.06817165697404,\n", " 11.522154793046779,\n", " 39.51208695436254,\n", " 80.7580730129214,\n", " 95.58984621677929,\n", " 92.90973208266304,\n", " 49.82029760375377,\n", " 33.37406148763389,\n", " 38.115383318838006,\n", " 90.95667400006175,\n", " 73.6187093095674,\n", " 13.778168015820757,\n", " 89.06577478480804,\n", " 44.09514365514716,\n", " 92.13552165574762,\n", " 51.231143040741856,\n", " 97.6671853186873,\n", " 17.281242520378225,\n", " 22.578120843131234,\n", " 50.50645487826672,\n", " 36.535093730187064,\n", " 91.54635905295227,\n", " 79.92498929017839,\n", " 39.84056218659281,\n", " 45.8711751449302,\n", " 50.88921923664634,\n", " 72.0050966922218,\n", " 2.4746900454202136,\n", " 80.89980166828325,\n", " 59.84551980528566,\n", " 5.479422970481762,\n", " 12.166064012582867,\n", " 14.07808471225871,\n", " 29.0156985248621,\n", " 58.74962053381558,\n", " 93.71384527791147]" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 生成随机的 0-100的1000数字\n", "序号 = range(1000)\n", "随机数字 = [random.uniform(0, 100) for i in 序号]\n", "随机数字" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABH8AAAHTCAYAAAC+zbSwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3X2QZXdaH/bvYw1CKzWrlSytTI1gh01BgsKb1G1jpVd4eFmBI1G0wLa02Wk7sFRjm0BSKC6kiEBhBMgEqRJDNMnyVqIbIxCJDEjg3QV2zNStBdKD1gmRoQrCKEi2ShFv6921jLP55Q/1UF1T0tzTt8/te+7R51PVNX1v/849z/f8zjl956lzT1drLQAAAACM019YdAEAAAAAzI/mDwAAAMCIaf4AAAAAjJjmDwAAAMCIaf4AAAAAjJjmDwAAAMCIHZs2oKquTvJ4ksuSfCzJfUkeSfLmJL/RWrt3rhUCAAAAMLMuV/68O8kjrbXbk7yY5ENJvqu1dluSG6vq5BzrAwAAAOAQpl7501p7dN/D65NcmeQ39x6/lOTqOdQFAAAAQA+qtdZtYNWtSR5M8sEkb0rya3n14183t9Y+etHYrSRbSXLs2LHVN7/5zX3WfKQ+9rGP5aqrrlp0Gb2QZZhkGZ6x5EhkGSpZhkmWYZJleMaSI5FlqGQZpjFlGYs/+qM/erm1dn2nwa21qV9Jrk2ym+Rte4/fkeRnk3zbtGVXV1fbMjt16tSiS+iNLMMky/CMJUdrsgyVLMMkyzDJMjxjydGaLEMlyzCNKctYJNltHXo6rbVON3y+PMkTSe5vrT239/SHk3x6kncdsDEFAAAAwBGa2vxJ8p4ktyR5oKoeSHI6yU159SbQH59ncQAAAAAcTpcbPp/Oqw0fAAAAAJZMlz/1DgAAAMCS0vwBAAAAGDHNHwAAAIAR0/wBAAAAGDHNHwAAAIAR0/wBAAAAGDHNHwAAAIAROzZtQFVdneTxJJcl+ViSv5vkx5K8Ncm51to3zLVCAAAAAGbW5cqfdyd5pLV2e5IXk9yd5Cdaa2tJPqWq1uZZIAAAAACzm3rlT2vt0X0Pr0/yfJJPraq3JPm0JH8wp9oAAAAAOKRqrXUbWHVrkgeTfF2S703y20luTPKNrbV/f9HYrSRbSbKysrK6sbHRZ81HajKZZH19fdFl9EKWYZJleMaSI5FlqGQZJlmGSZbhGUuORJahkmWYxpRlLHZ2ds7tfSprutba1K8k1ybZTfK2JD+a5M17z39Lkq1LLbu6utqW2alTpxZdQm9kGSZZhmcsOVqTZahkGSZZhkmW4RlLjtZkGSpZhmlMWcYiyW7r0NNprU2/509VXZ7kiST3t9aeS3JNks+tqsuSfGGSbpcOAQAAAHDkutzw+T1JbknyQFWdSfJrSd6b5E/z6hVBPzm36gAAAAA4lC43fD6d5PRFT/+j+ZQDAAAAQJ+6XPkDAAAAwJLS/AEAAAAYMc0fAAAAgBHT/AEAAAAYMc0fAAAAgBHT/AEAAAAYMc0fAAAAgBE7Nm1AVV2d5PEklyX5WJIzSe7a+/Fbkvx6a+0b5lUgAAAAALPrcuXPu5M80lq7PcmLSX6/tXaytXYyydkkPzTH+gAAAAA4hKlX/rTWHt338PokLyVJVR1PckNrbXdOtQEAAABwSNVa6zaw6tYkD7bWvnTv8fck+UBr7YOvMXYryVaSrKysrG5sbPRX8RGbTCZZX19fdBm9kGWYZBmeseRIZBkqWYZJlmGSZXjGkiORZahkGaYxZRmLnZ2dc621tU6DW2tTv5Jcm2Q3ydv2Hv+FJB/KXvPoUl+rq6ttmZ06dWrRJfRGlmGSZXjGkqM1WYZKlmGSZZhkGZ6x5GhNlqGSZZjGlGUskuy2Dj2d1tr0e/5U1eVJnkhyf2vtub2nb8urN3rudtkQAAAAAAvR5YbP70lyS5IHqupMVd2d5MuT/OpcKwMAAADg0Lrc8Pl0ktMXPf1T8ykHAAAAgD51ufIHAAAAgCWl+QMAAAAwYpo/AAAAACOm+QMAAAAwYpo/AAAAACOm+QMAAAAwYpo/AAAAACM2tflTVVdX1S9W1fur6smqunzv+Uer6ivnXyIAAAAAs+py5c+7kzzSWrs9yYtJvqKqbkvyl1prPz/X6gAAAAA4lKnNn9bao621D+w9vD7JHyf5oSTnq+qr5lkcAAAAAIdTrbVuA6tuTfJgkn+S5I4kfz/JNyV5sbX2AxeN3UqylSQrKyurGxsbfdZ8pCaTSdbX1xddRi9kGSZZhmcsORJZhkqWYZJlmGQZnrHkSGQZKlmGaUxZxmJnZ+dca22t0+DW2tSvJNcm2U3ytiQ/mOQr9p7/7CT/66WWXV1dbcvs1KlTiy6hN7IMkyzDM5YcrckyVLIMkyzDJMvwjCVHa7IMlSzDNKYsY5Fkt3Xo6bTWOt3w+fIkTyS5v7X2XJLfTfL2vR+vJXnuQK0pAAAAAI5Mlxs+vyfJLUkeqKozefWeP19cVb+aVz/69f3zKw8AAACAwzg2bUBr7XSS0xc9/dh8ygEAAACgT12u/AEAAABgSWn+AAAAAIyY5g8AAADAiGn+AAAAAIyY5g8AAADAiGn+AAAAAIyY5g8AAADAiB2bNqCqrk7yeJLLknwsyd1JfjfJ/7U35Jtaa//H3CoEAAAAYGZdrvx5d5JHWmu3J3kxyX1JfrK1dnLvS+MHAAAAYKCmNn9aa4+21j6w9/D6JP9vkjur6jeq6keqaurVQwAAAAAsRrXWug2sujXJg3n1yp/nW2v/uqp+PMnPtNZ+7qKxW0m2kmRlZWV1Y2Oj36qP0GQyyfr6+qLL6IUswyTL8IwlRyLLUMkyTLIMkyzDM5YciSxDJcswjSnLWOzs7Jxrra11Gtxam/qV5Noku0neluST9z3/zUnuvdSyq6urbZmdOnVq0SX0RpZhkmV4xpKjNVmGSpZhkmWYZBmeseRoTZahkmWYxpRlLJLstg49ndba9I99VdXlSZ5Icn9r7bkk21X1+VV1WZKNJP9ihgYVAAAAAEegyw2f35PkliQPVNWZJP9nku0kH07yodbaL82vPAAAAAAOY+rNmltrp5Ocvujp75xPOQAAAAD0qcuVPwAAAAAsKc0fAAAAgBHT/AEAAAAYMc0fAAAAgBHT/AEAAAAYMc0fAAAAgBHT/AEAAAAYsanNn6q6uqp+sareX1VPVtXle8/fUFXPzL9EAAAAAGbV5cqfdyd5pLV2e5IXk3zF3vPfn+RN8yoMAAAAgMM7Nm1Aa+3RfQ+vT/JSVX1Jko/l1WYQAAAAAANVrbVuA6tuTfJgkr+e5H1J7kryT1trJ19j7FaSrSRZWVlZ3djY6KveIzeZTLK+vr7oMnohyzDJMjxjyZHIMlSyDJMswyTL8IwlRyLLUMkyTGPKMhY7OzvnWmtrnQa31qZ+Jbk2yW6StyX59iR/c+/5M9OWXV1dbcvs1KlTiy6hN7IMkyzDM5YcrckyVLIMkyzDJMvwjCVHa7IMlSzDNKYsY5Fkt3Xo6bTWOt3w+fIkTyS5v7X2XJIvS/KNVXUmyRdU1Q8fvD8FAAAAwFHocsPn9yS5JckDew2f/7G1drK9+nGvD7fWvn6O9QEAAABwCF1u+Hw6yenX+dnJvgsCAAAAoD9drvwBAAAAYElp/gAAAACMmOYPAAAAwIhp/gAAAACMmOYPAAAAwIhp/gAAAACM2EzNn6q6tqreWVXX9V0QAAAAAP2Z2vypqqur6her6v1V9WRV3ZDkqSR/JckHq+r6uVcJAAAAwEy6XPnz7iSPtNZuT/Jikr+b5Ftaa9+d5H1JbpljfQAAAAAcwtTmT2vt0dbaB/YeXp/kfa21X6uqL8qrV/98aJ4FAgAAADC7aq11G1h1a5IHW2tfWlWV5AeT3Jjkntbav71o7FaSrSRZWVlZ3djY6LfqIzSZTLK+vr7oMnohyzDJMjxjyZHIMlSyDJMswyTL8IwlRyLLUMkyTGPKMhY7OzvnWmtrnQa31qZ+Jbk2yW6St130/HcluftSy66urrZldurUqUWX0BtZhkmW4RlLjtZkGSpZhkmWYZJleMaSozVZhkqWYRpTlrFIsts69HRaa51u+Hx5kieS3N9ae66qvrWq/vbej9+S5E8O3J4CAAAA4Eh0ueHze/LqTZ0fqKozSc4n2ayqX01yWZL3z606AAAAAA7l2LQBrbXTSU5f9PRPzaccAAAAAPrU5cofAAAAAJaU5g8AAADAiGn+AAAAAIyY5g8AAADAiGn+AAAAAIyY5g8AAADAiGn+AAAAAIzYsWkDqurqJI8nuSzJx5L85xc9vru19mdzrBEAAACAGXW58ufdSR5prd2e5MUkf+eix18xx/oAAAAAOISpV/601h7d9/D6JI+11n5t3+OX5lEYAAAAAIdXrbVuA6tuTfJga+1LX+vxRWO3kmwlycrKyurGxkZ/FR+xyWSS9fX1RZfRC1mGSZbhGUuORJahkmWYZBkmWYZnLDkSWYZKlmEaU5ax2NnZOddaW+s0uLU29SvJtUl2k7zttR5f6mt1dbUts1OnTi26hN7IMkyyDM9YcrQmy1DJMkyyDJMswzOWHK3JMlSyDNOYsoxFkt3WoafTWpt+z5+qujzJE0nub609d/HjWbpTAAAAAByNLjd8fk+SW5I8UFVnkty//3FV3T3H+gAAAAA4hC43fD6d5PRFT3/nfMoBAAAAoE9drvwBAAAAYElp/gAAAACMmOYPAAAAwIhp/gAAAACMmOYPAAAAwIhp/gAAAACMmOYPAAAAwIhNbf5U1dVV9YtV9f6qerKqLq+qG6rq7FEUCAAAAMDsulz58+4kj7TWbk/yYpJ3JXksyVXzLAwAAACAwzs2bUBr7dF9D69P8vtJ7k7ys/MqCgAAAIB+VGut28CqW5M82Fr70r3HZ1prJ19n7FaSrSRZWVlZ3djY6KfaBZhMJllfX190Gb2QZZhkGZ6x5EhkGSpZhkmWYZJleMaSI5FlqGQZpjFlGYudnZ1zrbW1ToNba1O/klybZDfJ2/Y9d6bLsqurq22ZnTp1atEl9EaWYZJleMaSozVZhkqWYZJlmGQZnrHkaE2WoZJlmMaUZSyS7LYOfZnWWqcbPl+e5Ikk97fWnpu1IwUAAADA0etyw+f3JLklyQNVdaaq7p5zTQAAAAD0pMsNn08nOf0az5+cR0EAAAAA9KfLlT8AAAAALCnNHwAAAIAR0/wBAAAAGDHNHwAAAIAR0/wBAAAAGDHNHwAAAIAR0/wBAAAAGDHNHwAAAIARm9r8qaqrq+oXq+r9VfVkVV1eVT9SVR+qqm87iiIBAAAAmE2XK3/eneSR1trtSV5Mck+Sy1prtyZ5e1V95jwLBAAAAGB21VrrPrjqZ5K8Ocl/31r7haq6J8mbWms/dtG4rSRbSbKysrK6sbHRY8lHazKZZH19fdFl9EKWYZJleMaSI5FlqGQZJlmGSZbhGUuORJahkmWYxpRlLHZ2ds611tY6DW6tdfpKcmuSX07yI0k+f++525Pcd6nlVldX2zI7derUokvojSzDJMvwjCVHa7IMlSzDJMswyTI8Y8nRmixDJcswjSnLWCTZbR17Op1u+FxV1yb5gSRfl+SjSd6096OVuGk0AAAAwGB1ueHz5UmeSHJ/a+25JOeSvGPvx5+f5PzcqgMAAADgULpctfOeJLckeaCqziSpJJtV9UiSv5Xk6fmVBwAAAMBhHJs2oLV2Osnp/c9V1c8leWeS72ut/emcagMAAADgkKY2f15La+2Pk/x0z7UAAAAA0DM3awYAAAAYMc0fAAAAgBHT/AEAAAAYMc0fAAAAgBHT/AEAAAAYsU7Nn6q6oarO7n1/S1X9UlVNqure+ZYHAAAAwGFMbf5U1TVJHkty1d5TP5Dka5O8I8nXVNVnzK88AAAAAA6jy5U/n0hyd5KP7D2+trX2B621luQPk7x5XsUBAAAAcDj1ag+nw8CqM621k1X1w0k+nOSPktyf5PPaRS9SVVtJtpJkZWVldWNjo9+qj9BkMsn6+vqiy+iFLMMky/CMJUciy1DJMkyyDJMswzOWHMn4srx05YlOY++6+fh8izmksc2LLMzLzs7OudbaWpexszR/LkvyxUn+YZJHW2s7l1pubW2t7e7udlrHEG1ubmZ7e3vRZfRClmGSZXjGkiORZahkGSZZhkmW4RlLjmR8Wc4ev6fT2PMP3THnag5nbPMiC/NSVZ2bPwf+a1+ttU8k+Z29hz9x0OUBAAAAODqz/qn3B5N868Uf9wIAAABgWI51HdhaO7nv+78zl2oAAAAA6NWsV/4AAAAAsAQ0fwAAAABGTPMHAAAAYMQ0fwAAAABGTPMHAAAAYMQ0fwAAAABGTPMHAAAAYMQ6NX+q6oaqOrv3/dur6per6sNV9d/OtzwAAAAADmNq86eqrknyWJKr9p76L5J8e2vtC5J8eVVdP8f6AAAAADiELlf+fCLJ3Uk+svf4D5N8XlXdkOSTk/zJnGoDAAAA4JCqtdZtYNWZ1trJqlpN8s1Jnk9yLMl97aIXqaqtJFtJsrKysrqxsdFv1UdoMplkfX190WX0QpZhkmV4xpIjkWWoZBkmWYZJluEZS45kfFleuvJEp7F33Xx8vsUc0tjmRRbmZWdn51xrba3L2FmaP08k+VuttVZV/zjJU62197/ecmtra213d7fTOoZoc3Mz29vbiy6jF7IMkyzDM5YciSxDJcswyTJMsgzPWHIk48ty9vg9ncaef+iOOVdzOGObF1mYl6rq3PyZ5a99fUaST6uqK5LckqRb9wgAAACAIzdL8+c7kpxJ8v8k+YMkv9JnQQAAAAD051jXga21k3v/Pp3k6XkVBAAAAEB/ZrnyBwAAAIAlofkDAAAAMGKaPwAAAAAjpvkDAAAAMGKaPwAAAAAjpvkDAAAAMGKaPwAAAAAj1qn5U1U3VNXZve+/s6rO7H39dlXdP98SAQAAAJjVsWkDquqaJI8luSpJWmvfse9nP5Pkx+dWHQAAAACH0uXKn08kuTvJR/Y/WVV/OcnzrbUX5lEYAAAAAIdXrbVuA6vOtNZO7nu8k+Q7Wmu/9xpjt5JsJcnKysrqxsZGP9UuwGQyyfr6+qLL6MX+LE8+061nd9fNx+dZ0szmOS9HvW3Guo8ts7HkSGQZKlmGSZZhkmV4xpIjGV+Wl6480WnsUN/jXzC2eZGFednZ2TnXWlvrMnam5k9VvSXJT7fWbp+23NraWtvd3e20jiHa3NzM9vb2osvoxf4sJ+57utMy5x+6Y54lzWye83LU22as+9gyG0uORJahkmWYZBkmWYZnLDmS8WU5e/yeTmOH+h7/grHNiyzMS1V1bv7M+te+virJL8y4LAAAAABHZNbmz5cn+dU+CwEAAACgf1P/2tcF++/301r7z+ZSDQAAAAC9mvXKHwAAAACWgOYPAAAAwIhp/gAAAACMmOYPAAAAwIhp/gAAAACMmOYPAAAAwIhp/gAAAACMWKfmT1XdUFVnL3ru56vqC+ZTFgAAAAB9mNr8qaprkjyW5Kp9z707ye+11j48x9oAAAAAOKQuV/58IsndST6SJFV1bZKHk/xxVX3xHGsDAAAA4JCqtdZtYNWZ1trJqvquJG9J8t1JvjfJk621n7to7FaSrSRZWVlZ3djY6LfqIzSZTLK+vr7oMnqxP8uTz7zQaZm7bj4+z5JmNs95OeptM9Z9bJmNJUciy1DJMkyyDJMswzOWHMn4srx05YlOY4f6Hv+Csc2LLMzLzs7OudbaWpexszR/nkryX7fWfruq/nqSd7bWvuX1lltbW2u7u7ud1jFEm5ub2d7eXnQZvdif5cR9T3da5vxDd8yzpJnNc16OetuMdR9bZmPJkcgyVLIMkyzDJMvwjCVHMr4sZ4/f02nsUN/jXzC2eZGFeamqzs2fWf7a1+8mefve92tJnpvhNQAAAAA4AsdmWOb7kvxwVT2Q5ONJvrrfkgAAAADoS+fmT2vt5N6//yrJfzqvggAAAADozywf+wIAAABgSWj+AAAAAIyY5g8AAADAiGn+AAAAAIyY5g8AAADAiGn+AAAAAIyY5g8AAADAiHVq/lTVDVV1du/741X1fFWd2fu6fr4lAgAAADCrY9MGVNU1SR5LctXeU1+Y5Ltba6fnWRgAAAAAh9flyp9PJLk7yUf2Hv/VJF9fVb9ZVd8zt8oAAAAAOLRqrXUbWHWmtXayqr44yW6Sjyf5pST/ZWvtf79o7FaSrSRZWVlZ3djY6LfqIzSZTLK+vr7oMnqxP8uTz7zQaZm7bj4+z5JmNs95OeptM9Z9bJmNJUeyXFmmHXuvPP9srrjxpsGelw5imeZlGlmGaWxZXrryRKexQz8/jGVexpIjGV8Wx8rwyMI87ezsnGutrXUZO0vz55Nba/9u77lHkkxaa//L6y23trbWdnd3O61jiDY3N7O9vb3oMnqxP8uJ+57utMz5h+6YZ0kzm+e8HPW2Ges+tszGkiNZrizTjr2Xn3o4191572DPSwexTPMyjSzDNLYsZ4/f02ns0M8PY5mXseRIxpfFsTI8sjBPVdW5+TPLX/t6X1V9alVdmeT2JL81w2sAAAAAcASm3vD5NXxnkg8m+bMk/1Nr7Xf6LQkAAACAvnRu/rTWTu79+8Ek/9G8CgIAAACgP7N87AsAAACAJaH5AwAAADBimj8AAAAAI6b5AwAAADBimj8AAAAAI6b5AwAAADBimj8AAAAAI9ap+VNVN1TV2Yue+5yq+sB8ygIAAACgD1ObP1V1TZLHkly177lK8kiST5pfaQAAAAAcVpcrfz6R5O4kH9n33Ncm+eBcKgIAAACgN9Va6zaw6kxr7WRV/cUkTyT58iQfaK2dfI2xW0m2kmRlZWV1Y2Ojv4qP2GQyyfr6+qLL6MX+LE8+80KnZe66+fg8S5rZLPPSNXNXfW2bse5jy2wIOfo6RoeQpatpmV95/tlcceNNgz0vHcQyzcs0F7Is+++VZHzz8tKVJzqNHfKcJOPLMoZ9bCw5kvFlcay8vkX9nlrkPtZ35q5ZxvCeYFns7Oyca62tdRk7S/Pnh5L8cGvt1y88d6nl1tbW2u7ubqd1DNHm5ma2t7cXXUYv9mc5cd/TnZY5/9Ad8yxpZrPMS9fMXfW1bca6jy2zIeTo6xgdQpaupmV++amHc92d9w72vHQQyzQv01zIsuy/V5LxzcvZ4/d0GjvkOUnGl2UM+9hYciTjy+JYeX2L+j21yH2s78xds4zhPcGyqKrOzZ9jM7z+X0vyma/e9idfUFUPtta+bYbXAQAAAGDODtz8aa191oXv96780fgBAAAAGKhOf+o9SV7r413TPvIFAAAAwGJ1bv4AAAAAsHw0fwAAAABGTPMHAAAAYMQ0fwAAAABGTPMHAAAAYMQ0fwAAAABGbKbmT1V9alV9WVV9St8FAQAAANCfTs2fqrqhqs7uff9ZSX4qyXqSf15Vl8+xPgAAAAAO4di0AVV1TZLHkly199TnJfna1trvVdXnJvmMJL8zvxIBAAAAmFWXK38+keTuJB9JktbazyR5rqruSHJNkt+dX3kAAAAAHEa11roNrDrTWju59/1bkvwPebUx9PWttf/vorFbSbaSZGVlZXVjY6PPmo/UZDLJ+vr6osvoxf4sTz7zQqdl7rr5+DxLmtks89I1c1d9bZsLWZZ9TpLxHC9DOFb6Wu8yzcm0zK88/2yuuPGmQR8DXS3TvEzjHHb0umzrC8dLF4uckzFl6WJZ9rFpxpIjGV+Wl6480WnsG/FYWdTvqUXuY31n7pplDO8JlsXOzs651tpal7EzNX/2Pbed5Adba7/+esutra213d3dTusYos3NzWxvby+6jF7sz3Livqc7LXP+oTvmWdLMZpmXrpm76mvbXMiy7HOSjOd4GcKx0td6l2lOpmV++amHc92d9w76GOhqmeZlGuewo9dlW184XrpY5JyMKUsXy7KPTTOWHMn4spw9fk+nsW/EY2VRv6cWuY/1nblrljG8J1gWVdW5+XPgv/ZVVaer6ov2Hr4lyZ8c9DUAAAAAOBpTb/j8Gr4vyXZVtSTvb6252TMAAADAQHVu/lz4yFdr7feTvGNeBQEAAADQnwN/7AsAAACA5aH5AwAAADBimj8AAAAAI6b5AwAAADBimj8AAAAAI6b5AwAAADBimj8AAAAAI9ap+VNVN1TV2b3vP72qzlTVr1TVe6uq5lsiAAAAALOa2vypqmuSPJbkqr2nviHJ32utfUmST0vyufMrDwAAAIDD6HLlzyeS3J3kI0nSWnugtfYv9372F5O8PKfaAAAAADikaq11G1h1prV2ct/ju5N8RWvta19j7FaSrSRZWVlZ3djY6KfaBZhMJllfX5/Laz/5zAudxt118/Fe1rc/S9/rXmSWrrrW2FXfWY56G87DPI+XozTPY6WrvvbXV55/NlfceNOg95sLpmVepizTLMtx36W+C/PS1ZDnb1nOYX3PyyLnZOhZ+j5GF7mP9ZllbMfKu77ynUe+3qT//XUymeSlK08sZN1ddd02b/34+d73sb7/L9DVPLJ0tahz2NDf34zJzs7OudbaWpexMzV/qurtSX4qyZe11v70Usutra213d3dTusYos3NzWxvb8/ltU/c93SncecfuqOX9e3P0ve6F5mlq641dtV3lqPehvMwz+PlKM3zWOmqr/315aceznV33jvo/eaCaZmXKcs0y3Lcd6nvwrx0NeT5W5ZzWN/zssg5GXqWvo/RRe5jfWYZ27Hy0d/6lSNfb9L//rq5uZmzx+9ZyLq76rptbnvh8d73sb7/L9DVPLJ0tahz2NDf34xJVXVu/hz4r33t3QPoJ5N83bTGDwAAAACLNcufer8vyacn+YG9v/r113quCQAAAICeHOs68MJHvlpr35rkW+dVEAAAAAD9meXKHwAAAACWhOYPAAAAwIhp/gAAAACMmOYPAAAAwIhp/gAAAACMmOYPAAAAwIhp/gAAAACMWKfmT1XdUFVn9z3+7Kr62fmVBQAAAEAfjk0bUFXXJHksyVV7j/+DJP9dkpX5lgYAAADAYXW58ucTSe5O8pG9x/8mydfMrSIAAAAAelOttW4Dq8601k6+3uOLxm4l2UqSlZWV1Y2NjcP46IicAAAc+0lEQVRXuiCTySTr6+tzee0nn3mh07i7bj7ey/r2Z+l73V1fr6tp651lXvqusauuWeaxPyxyH1tm8zxWuuprf33l+WdzxY039V5fcvTH1DyzdNX3vHQ11P0rOXiWrvr+/dPl9Q5yDjvINlzE/B1kXoZ+TM0jy1G/b7lgkb8nx3Ss9H0Oe9dXvvPI15v0f+xNJpO8dOWJhay7q67b8K0fP9/7sbKo/wt0PYct6vx1kHV3PfYX9f75jWhnZ+dca22ty9i5NH/2W1tba7u7u53WMUSbm5vZ3t6ey2ufuO/pTuPOP3RHL+vbn6XvdXd9va6mrXeWeem7xq66ZpnH/rDIfWyZzfNY6aqv/fXlpx7OdXfe23t9ydEfU/PM0lXf89LVUPev5OBZuur790+X1zvIOewg23AR83eQeRn6MTWPLEf9vuWCRf6eHNOx0vc57KO/9StHvt6k/2Nvc3MzZ4/fs5B1d9V1G972wuO9HyuL+r9A13PYos5fB1l312N/Ue+f34iqqnPzx1/7AgAAABgxzR8AAACAEevc/Ln4I15dPvIFAAAAwGK58gcAAABgxDR/AAAAAEZM8wcAAABgxDR/AAAAAEZM8wcAAABgxDR/AAAAAEZM8wcAAABgxDR/AAAAAEasU/Onqm6oqrN7339SVf18VU2q6uvmWx4AAAAAhzG1+VNV1yR5LMlVe099U5JzrbX1JH+jqj5ljvUBAAAAcAjVWrv0gKo3J6kkP9taO1lVP5fkvtbas1V1X5Jfb6198KJltpJsJcnKysrqxsbGfKo/ApPJJOvr63N57SefeaH317zr5uOv+7P9Wbqu+1Kvt988slzKK88/mytuvOlI1zmradvwwrz0PSfJ0c/zhXk5SI19rPeCvtY7z2Olq76OqXnNSbK4436o56WDOOg5bKj7V7I85+Mu2/Agv/OP+nf4Qdd9kHmZx/mhq0Vl6Xv+uq53MpnkpStP9Pqai8gyr2NlEZlfef7ZvOsr33nk6036f0+3DMd912341o+f7/3/YIt6X9B1Xhb5/uYg57Au87Ko989vRDs7O+daa2tdxk5t/vz5wKoze82fX07y1a21P91r8nyktfb46y23trbWdnd3O61jiDY3N7O9vT2X1z5x39O9v+b5h+543Z/tz9J13Zd6vf3mkeVSXn7q4Vx3571Hus5ZTduGF+al7zlJjn6eL8zLQWrsY70X9LXeeR4rXfV1TM1rTpLFHfdDPS8dxEHPYUPdv5LlOR932YYH+Z1/1L/DD7rug8zLPM4PXS0qS9/z13W9m5ubOXv8nl5fcxFZ5nWsLCLzy089nI/+1q8c+XqT/t/TLcNx33Ub3vbC473/H2xR7wu6zssi398c5BzWZV4W9f75jaiqOjd/Zrnh80eTvGnv+5UZXwMAAACAIzBL4+Zcknfsff/5Sc73Vg0AAAAAvTo2wzKPJfmFqrotyU1Jfr3fkgAAAADoS+crf1prJ/f+fS7JO5NMknxZa+0T8ykNAAAAgMOa5cqftNb+VZKf7rkWAAAAAHrmZs0AAAAAI6b5AwAAADBimj8AAAAAI6b5AwAAADBimj8AAAAAI3bg5k9VfUZVPV1VZ6vq4XkUBQAAAEA/Zrny5x8l+a7W2m1Jbqyqk/2WBAAAAEBfZmn+fFaS39z7/qUkV/dXDgAAAAB9qtbawRao+rYkb0rya0keSXJza+2jF43ZSrKVJCsrK6sbGxv9VLsAk8kk6+vrSZInn3lhwdVMd9fNx1/3Z7NkudTr7XfU2+aV55/NFTfedKTrnJeDZuk6J8nRz/O8svSdY5plO+4v5cKc9LVt9lvUcT/U89JBzPO476LPbbMs5+Mu23AymeSlK0/Mv5jX0ee+vSzz0sVBsizq/NB1vQfZx4acZf/vyWkOUt8iMi/yWOn7Pd08jpW+dZ27t378/Fz2sUXoOi+LfH/Tdd0/+fMf6PV4WeT7m0UdA33b2dk511pb6zL2wM2fJKmqdyT5B0n+t9bag5cau7a21nZ3dw+8jqHY3NzM9vZ2kuTEfU8vuJrpzj90x+v+bJYsl3q9/Y5627z81MO57s57j3Sd83LQLF3nJDn6eZ5Xlr5zTLNsx/2lXJiTvrbNfos67od6XjqIeR73XfS5bZblfNxlG25ububs8XuOoJrX1ue+vSzz0sVBsizq/NB1vQfZx4acZf/vyWkOUt8iMi/yWOn7Pd08jpW+dZ272154fC772CJ0nZdFvr/puu6Vz/mSXo+XRb6/WdQx0Leq6tz8OTbjOj6c5NOTvGvG5QEAAAA4ArP+qfd/kOSR1trH+ywGAAAAgH7NdOVPa+07+i4EAAAAgP7NeuUPAAAAAEtA8wcAAABgxDR/AAAAAEZM8wcAAABgxDR/AAAAAEZM8wcAAABgxDR/AAAAAEZspuZPVV1TVb9QVbtV9T/3XRQAAAAA/Zj1yp/NJD/RWltL8ilVtdZjTQAAAAD0ZNbmzx8m+ZyqekuST0vyB/2VBAAAAEBfqrV28IWq3pbke5P8dpIbk3xja+3f7/v5VpKtJFlZWVnd2Njop9oFmEwmWV9fT5I8+cwLC65murtuPv66P5sly6Veb7+j3javPP9srrjxpiNd57wMIUtf83zQLH3vX11fb5plO+4v5cKc9LVt9lvUcT/U89JBzOtY6arPbTOEc1gXXbbhZDLJS1eemH8xR2BZ5qWLZcjS9Rg9yD62qHPdIo+VRWRe5P51kHN7l8zLkKXr3L314+f//L1YX6+5KF3nZRne3yxqH5vHtpnHe+NF2NnZObf3iaypZm3+/GiS/6q19pGq+pYkH22tvfe1xq6trbXd3d0Dr2MoNjc3s729nSQ5cd/TC65muvMP3fG6P5sly6Veb7+j3jYvP/Vwrrvz3iNd57wMIUtf83zQLH3vX11fb5plO+4v5cKc9LVt9lvUcT/U89JBzOtY6arPbTOEc1gXXbbh5uZmzh6/5wiqmb9lmZculiFL12P0IPvYos51izxWFpF5kfvXQc7tXTIvQ5auc3fbC4//+Xuxvl5zUbrOyzK8v1nUPjaPbTOP98aLUFWdmz+zfuzrmiSfW1WXJfnCJAfvIAEAAAAwd7M2f743yXuT/GmSa5P8ZG8VAQAAANCbY7Ms1Fr7jST/cc+1AAAAANCzWa/8AQAAAGAJaP4AAAAAjJjmDwAAAMCIaf4AAAAAjJjmDwAAAMCIaf4AAAAAjJjmDwAAAMCIHZtloar6e0nu3nv4liS/3lr7ht6qAgAAAKAXM13501o73Vo72Vo7meRskh/qtSoAAAAAenGoj31V1fEkN7TWdnuqBwAAAIAeVWtt9oWrvifJB1prH7zo+a0kW0mysrKyurGxcagiF2kymWR9fT1J8uQzLyy4munuuvn46/5sliyXer39jnrbvPL8s7nixpuOdJ3z8kbO0vf+1fX1plm24/5Sxrh/DfW8dBCLPlb6tCz7WJdtOJlM8tKVJ+ZfzBFYlnnpYhmydD1GD7KPvRGP+0VkXob9q6sxZXnrx8//+XuxaYb8+z4Z17wsKss8zg19/b9h0XZ2ds611ta6jJ25+VNVfyHJJMl/0i7xImtra213d3kvDNrc3Mz29naS5MR9Ty+4munOP3TH6/5sliyXer39jnrbvPzUw7nuznuPdJ3z8kbO0vf+1fX1plm24/5Sxrh/DfW8dBCLPlb6tCz7WJdtuLm5mbPH7zmCauZvWeali2XI0vUYPcg+9kY87heReRn2r67GlOW2Fx7/8/di0wz5930yrnlZVJZ5nBv6+n/DolVV5+bPYT72dVtevdHz7JcOAQAAADBXh2n+fHmSX+2rEAAAAAD6N9Ofek+S1tp/02chAAAAAPTvUH/tCwAAAIBh0/wBAAAAGDHNHwAAAIAR0/wBAAAAGDHNHwAAAIAR0/wBAAAAGDHNHwAAAIARO1Tzp6oeraqv7KsYAAAAAPo1c/Onqm5L8pdaaz/fYz0AAAAA9Gim5k9VfVKSH0pyvqq+qt+SAAAAAOhLtdYOvlDVe5LckeTvJ/mmJC+21n5g38+3kmwlycrKyurGxkY/1S7AZDLJ+vp6kuTJZ15YcDWH88rzz+aKG29adBm9kGWYxpJlLDkSWYbqoFnuuvl4p3GL+D21LPPSZRtOJpO8dOWJ+RdzBJZlXrp4o2Zx3B8NWYZJlmFaVJZ5nA+7vubQ7ezsnGutrXUZO2vz5weTPNVa+2dV9dlJvru19tWvNXZtba3t7u4eeB1Dsbm5me3t7STJifueXnA1h/PyUw/nujvvXXQZvZBlmMaSZSw5ElmG6qBZzj90R6dxi/g9tSzz0mUbbm5u5uzxe46gmvlblnnp4o2axXF/NGQZJlmGaVFZ5nE+7PqaQ1dVnZs/s97z53eTvH3v+7Ukz834OgAAAADM0bEZl/uRJD9aVfck+aQkf6O/kgAAAADoy0zNn9bav0nyN3uuBQAAAICezfyn3gEAAAAYPs0fAAAAgBHT/AEAAAAYMc0fAAAAgBHT/AEAAAAYMc0fAAAAgBHT/AEAAAAYsQM3f6rqWFX931V1Zu/rc+dRGAAAAACHd2yGZT4vyU+21r6172IAAAAA6NcsH/v6q0nurKrfqKofqapZGkgAAAAAHIFqrR1sgaq/nOT51tq/rqofT/IzrbWfu2jMVpKtJFlZWVnd2Njoq94jN5lMsr6+niR58pkXFlzN4bzy/LO54sabFl1GL2QZprFkGUuORJahOmiWu24+3mncIn5PLcu8dNmGk8kkL115Yv7FHIFlmZcu3qhZHPdHQ5ZhkmWYxpSl6zl26HZ2ds611ta6jJ2l+fPJrbV/t/f9Nyf5pNbaw683fm1tre3u7h5oHUOyubmZ7e3tJMmJ+55ecDWH8/JTD+e6O+9ddBm9kGWYxpJlLDkSWYbqoFnOP3RHp3GL+D21LPPSZRtubm7m7PF7jqCa+VuWeenijZrFcX80ZBkmWYZpTFm6nmOHrqo6N39m+djXdlV9flVdlmQjyb+Y4TUAAAAAOAKz3K/nHyb5J0kqyc+11n6p35IAAAAA6MuBmz+ttd/Kq3/xCwAAAICBm+VjXwAAAAAsCc0fAAAAgBHT/AEAAAAYMc0fAAAAgBHT/AEAAAAYMc0fAAAAgBHT/AEAAAAYsZmbP1V1Q1U902cxAAAAAPTrMFf+fH+SN/VVCAAAAAD9m6n5U1VfkuRjSV7stxwAAAAA+lSttYMtUHV5kvcluSvJP22tnXyNMVtJtpJkZWVldWNj4/CVLshkMsn6+nqS5MlnXlhwNYfzyvPP5oobb1p0Gb2QZZjGkmUsORJZhkqWYZJlmN6oWe66+XincYt4f/pGnZOhk2WYZBmmrufYodvZ2TnXWlvrMnaW5s+3J/mXrbUnqurMazV/9ltbW2u7u7sHWseQbG5uZnt7O0ly4r6nF1zN4bz81MO57s57F11GL2QZprFkGUuORJahkmWYZBmmN2qW8w/d0WncIt6fvlHnZOhkGSZZhqnrOXboqqpz82eWj319WZJvrKozSb6gqn54htcAAAAA4AgcO+gCrbUvuvD93pU/X99vSQAAAAD05TB/7SvTPvIFAAAAwGIdqvkDAAAAwLBp/gAAAACMmOYPAAAAwIhp/gAAAACMmOYPAAAAwIhp/gAAAACM2MzNn6q6tqreWVXX9VkQAAAAAP2ZqflTVdckeSrJX0nywaq6vteqAAAAAOjFsRmX+7wk39Ja+7W9RtAtSd7XX1kAAAAA9GGmK39aa/98r/HzRXn16p8P9VsWAAAAAH2o1tpsC1ZVkh9McmOSe1pr/3bfz7aSbCXJysrK6sbGRg+lLsZkMsn6+nqS5MlnXlhwNYfzyvPP5oobb1p0Gb2QZZjGkmUsORJZhkqWYZJlmGQZnrHkSGQZKlmGaUxZ7rr5+KJL6MXOzs651tpal7EzN3/+/AWqvivJb7XWfuq1fr62ttZ2d3cPtY5F2tzczPb2dpLkxH1PL7iaw3n5qYdz3Z33LrqMXsgyTGPJMpYciSxDJcswyTJMsgzPWHIksgyVLMM0piznH7pj0SX0oqo6N39mveHzt1bV3957+JYkfzLL6wAAAAAwX7P+qff3Jtmsql9NclmS9/dXEgAAAAB9memvfbXW/jjJO3uuBQAAAICezXrlDwAAAABLQPMHAAAAYMQ0fwAAAABGTPMHAAAAYMQ0fwAAAABGTPMHAAAAYMQ0fwAAAABG7NgsC1XV1UkeT3JZko8lubu19md9FgYAAADA4c165c+7kzzSWrs9yYtJvqK/kgAAAADoy0xX/rTWHt338PokL/VTDgAAAAB9qtba7AtX3Zrkwdbal170/FaSrSRZWVlZ3djYOFSRizSZTLK+vp4kefKZFxZczeG88vyzueLGmxZdRi9kGaaxZBlLjkSWoZJlmGQZJlmGZyw5ElmGSpZhGlOWu24+vugSerGzs3OutbbWZezMzZ+qujbJ+5N8TWvtudcbt7a21nZ3d2daxxBsbm5me3s7SXLivqcXXM3hvPzUw7nuznsXXUYvZBmmsWQZS45ElqGSZZhkGSZZhmcsORJZhkqWYRpTlvMP3bHoEnpRVZ2bPzPd86eqLk/yRJL7L9X4AQAAAGCxZr3h83uS3JLkgao6U1V391gTAAAAAD2Z9YbPp5Oc7rkWAAAAAHo265U/AAAAACwBzR8AAACAEdP8AQAAABgxzR8AAACAEdP8AQAAABgxzR8AAACAEdP8AQAAABixmZs/VXVDVZ3tsxgAAAAA+jVT86eqrknyWJKr+i0HAAAAgD7NeuXPJ5LcneQjPdYCAAAAQM+qtTb7wlVnWmsnX+P5rSRbSbKysrK6sbEx8zoWbTKZZH19PUny5DMvLLiaw3nl+WdzxY03LbqMXsgyTGPJMpYciSxDJcswyTJMsgzPWHIksgyVLMM0pix33Xx80SX0Ymdn51xrba3L2Lk0f/ZbW1tru7u7M69j0TY3N7O9vZ0kOXHf0wuu5nBefurhXHfnvYsuoxeyDNNYsowlRyLLUMkyTLIMkyzDM5YciSxDJcswjSnL+YfuWHQJvaiqzs0ff+0LAAAAYMQ0fwAAAABG7FDNn2kf+QIAAABgsVz5AwAAADBimj8AAAAAI6b5AwAAADBimj8AAAAAI6b5AwAAADBimj8AAAAAI6b5AwAAADBimj8AAAAAIzZz86eqfqSqPlRV39ZnQQAAAAD0Z6bmT1V9dZLLWmu3Jnl7VX1mv2UBAAAA0IdqrR18oap/nOSftdZ+oaruSfKm1tqP7fv5VpKtvYf/YZLf6aPYBbkuycuLLqInsgyTLMMzlhyJLEMlyzDJMkyyDM9YciSyDJUswzSmLGPxttba9V0GHptxBVcleWHv+z9Kcsv+H7bW3pvkvTO+9qBU1W5rbW3RdfRBlmGSZXjGkiORZahkGSZZhkmW4RlLjkSWoZJlmMaU5Y1o1nv+fDTJm/a+XznE6wAAAAAwR7M2bc4lecfe95+f5Hwv1QAAAADQq1k/9vX/t3d3MXbUZRzHvz+hNWtFKdqgVayQ6BUUJXXZQmoWaKGoVSMkEl9IJFyAVRO5kBI1BBSiBrgRWqoBQgBN8K0BpSkvUrsKCqWUlygXVfG9gaiIGhO1ebj4z3Fnp6ebPdsmM8/4+yRN5uzV8+uzz8w5//Of2S3AlKSlwNnAxKErqXN6cftaxVm6yVm6py85wFm6ylm6yVm6yVm6py85wFm6ylm6qU9Z/u/M64HPAJIWA2uAHRGx95BWZWZmZmZmZmZmh8S8F3/MzMzMzMzMzKz7/KBmM7OekXSUpDWSXtt2LQerT1nMzMzMzNrixZ9ZSLpJ0sOSPtd2LQdD0uGSfitpe/XvhLZrmg9JR0uaqo4XSLpb0k8kXdB2baNqZHmDpN/X+rOk7frmQtKrJW2VdK+k70lamHVmDpAl5cxUt+R+HxgHHpS0JHFfhmVJ2Rf439w/Xh2n7MnAIEvm68uw2iVdIelRSTe0Xd8oDpBld+31mrZrHJWkjZLWVcfZ52WjpHXJ5+XiWt27JW3O2pchWW7K2BdJiyXdI2mnpM3Vz7L2ZEaW5LNyrKQfSJqSdG31s6x9mZElc1+s8OLPAUj6AHBYRKwEjpP0lrZrOgjLgW9GxGT176m2CxpV9SHwVmBR9aNPAo9FxKnAuZKOaK24EQ3JcjJwVa0/z7dX3Ug+DFwXEWcCe4HzyDszzSwbyDszy4FLIuIqYBtwOnn70sxyAXn7AnANMNaT68s1wBi5ry8zagcWUv6S6TjwnKTVbRY3omaWPwLP1PpyX7vljUbSKuB1EXF39nmpZyHxvETEptrv1xTwS5L2ZUiWzeTsy0eBOyJiBXCEpM+QtCc0sgAnkbMnAF8GvhARq4A3Jj+HzcgCfIq8fTG8+DObSeDO6vhepv+0fUYTwHskPVKtPM/3r7y1aR/wQeDF6vUk0/3ZAaxooab5amaZAC6UtEvS1e2VNZqI2Fj7QLEE+AhJZ2ZIlv+SdGYi4kcR8VNJ76R8iD2LvH1pZvkXSfsi6XTgn5TFxUmS9gT2y5L5+jKjduAM4DtRHoa4DVjVanWjaWY5FRiX9JCkLcm+IFkAfB14VtL7SDwvQ7Jknheg7FYGjqZ8EEzZl4FalhXk7MufgeMlHQkcAxxL3p40s5xNzp4AvBXYVR0/B1xL3r40s+wjb18ML/7MZhHwh+r4L5SLQ1aPAqsjYhxYALyr5XpGFhEvRsTfaj9K258hWbZS3ty+A1gpaXkrhc2TpJXAYuB3JO3JQC3LfSSeGUmiLDD+FQgS96WR5XES9kXSQuDzlB1lkPj8NSRL5utLs/YxkvaF/bO8GTgrIk4BngQ+1mJtozof+DnwFcqi73ry9qWZ5TXknZeB9cAmEp/HagZZsp7Hfgwso+zG+AVl92LWnjSz3EPOngB8G7hc5bbVtcAPyduXZpZd5O2L4cWf2fyD8kYQ4JXk/r96MiL+VB3vBDJtNzyQPvXnoYj4e0Tso3y4TdMfSUcBX6XcjpO6J40sqWcmivWUD32nkLgvjSxLk/ZlA7AxIl6oXmeelWaWzLPSrD1zX5pZxoA9tdeZ+vJ24GsRsRe4nbK7N2tfmllOSjwvSHoZcBqwndzz0syS9Tx2OXBRRFwJPAN8iLw9aWZJOysR8UXKF7sXUh7zkHZWhmR5JGtfrEjzy9eCx5jelnci8Gx7pRy02ySdKOkw4P3AE20XdAj0qT/bJL1e0iuAM4Gn2y5oLqodAN8CLouI35C4J0OypJ0ZSZdKOr96eSTwJfL2pZnlxqR9WQ2sl7QdeBuwjqQ9Yf8sW5P2BPaf80Xk7Uszy3mU3zOAc8nVlz3AcdXxCsoupqx9aWYh8bxAuRXyZ9WtkWmv+ZV6lqzX/MXACVXdJ5P4es+QLEl7MrAbeBNwHflnpZ4l66xYReWcZ02SXkV5CNwDlPtOJxq36qQh6XjgG4CAuyLisy2XNG+StkfEpKRllC2h91N2NkxUO2fSqGU5jbLt+N+Ubwivb7m0OZF0MXA10yf+W4BLSDgzQ7I8CJxDwpmpHih+J/ByykLiZZRvzjP2pZllE3AHCfsyUC2avJceXF+qLJ8g6fWleW2k3M42Rfk2cy2wNiJ+3V6Fczcky/XAFsqC1sPAxyPiP+1VOHfV84luptwasYCykHUXCedlSJYNlB2m6eYFoHou4c6I+G7298mNLCnfJ0sap7z3WkaZ83NI2pMhWT5Nwp4MSLoC2BMRt/VgVupZUs6KTfPizyyqDx5rgB3Vll3rEElLKSvp2zKdRPvMM9NN7kv3uCfdJGkMeDewKyJ+1XY9Vnheusl96R73pJvcF+sKL/6YmZmZmZmZmfWYn/ljZmZmZmZmZtZjXvwxMzMzMzMzM+sxL/6YmZmZmZmZmfWYF3/MzMzMzMzMzHrMiz9mZmZmZmZmZj32EvmC8g4zNvY+AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1440x576 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# 绘图\n", "plt.figure(figsize=(20,8))\n", "\n", "# 分组\n", "组距 = 10\n", "组数 = int((max(随机数字) - min(随机数字)) / 组距 )\n", "组数 = 100\n", "\n", "# 画直方图\n", "plt.hist(随机数字, 组数)\n", "\n", "# 指定刻度范围及步长\n", "plt.xticks(list(range(100))[::5])\n", "plt.yticks(list(range(30)))\n", "plt.grid(True, linestyle='-', alpha=0.8, color='k')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 饼图" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VNX5x/HPkxUJO5KGVQEFRAUVjLjBKFVRERWXqlVcWkTRIiKK/uxiXaqtW6lYWutCSysuiLZixa1GEFEIUSiCyhZBaELYF1myPL8/zkQjAgnJnTk3M8/79ZpXQpi58x1NvjmcOfdcUVWMMcb4l+I7gDHGGMcK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQiLNdwBj6iMRuRt4F/ghsAV4HJgMnKWq5dH7pAEvqOpgEXkWaFPlEFtVdWCcY5uQsxGyMftJRBoBm4HjgWzgUOAgYJuqlotIioikqmoZkBF9WLqqRipvwI4qx/uBiMyI76swYSS225sx+0dE2gI3Rm+fAB8ATYETgI3AIcBY4FTgKGAG0B7YDqQCCrRT1U4i0hyYBGSr6jFxfikmZKyQjdlPIpIDPAp8DnQFdgE9gF8CS4Bhqjoyet+pwCPAtap6iYhcCqCqk6J/3wQQ4J/RkXNCmTt3bnZaWtqTwBEk/r/IK4AFZWVlP+3Vq9ea2hzA5pCN2X9pwK+BK3BlWwr8BuiFK+dlACLSDzgZeAXoJiJv46Y4EJFhwLOq+kT0z3F+CfGRlpb2ZE5OzmGtWrXakJKSktCjv4qKCikpKeleVFT0JDCoNsewQjZm/x0E3IubO+6Jm5boCEyJ/v3rIjIEuBCYoapPikg/Vb1CRC4EUNXJHnL7cEQylDFASkqKtmrValNRUdERtT2GFbIx+0lVZ4rIC0Af4HXgU1UtFZEC4DzgbmA+MBF4VUQ6AGtFZCmwEkBExqpqWz+vIK5SkqGMK0Vfa62nZqyQjamdPwHbgJ8DX4pIR+BwYCdwjKrmA4iIAqcA/wFaq+ol0a8/5yW1CTUrZGP2U3RlxHjcXHEfoDvwDDAaKAYmi8hlwLXAm0Bf4DpgrIjkRQ/TteoxE/ENvT0S6RXo8VTnVneXkSNHtunfv/+WN998s0njxo3Lb7311jXnnHNO57y8vMVpaa4CS0tLOfvsszu/+eabS88555yOxcXFlcsVycrKKn/33XeXBJp7L6yQjdlPqrpBRC6PrjNGROYA/aucENJH3fKlMVUfJyJdVbU0/omT16ZNm1KaNGlSPnPmzKySkpK04uLitCVLlmQ0bNiwIi0tjfLyclSV9PR0SktLBaCsrExmz579eeUxBgwY0Kny85UrV6add955nefOnfv5np6vrqyQTfi4Ey+6AK2BVrvdsqMfW+DW9O5NObAOKNnttib6sQj4HNVttYlYWcbRzzX6fFX/vKfHWBnH2fr161PXrVuXNmHChOxu3bp9nZubu/XRRx/NLiwszOzdu3fXFStWZA4dOnTNe++913jRokUNBwwY0Gn16tUZubm5XcvLyxERioqKMgBKSkpSL7vsso7bt2+P2fI9K2Tjjyve7tHb4dFbd6ADbm1uXXWu5u8VkS+BhcCn3/lYy6I24ZKamqorVqzIGDZsWPHixYszi4uL0xctWtTwrrvuWtWtW7ed48aNa3XfffcVAUWnnHLKIcOHDy954oknWk2dOnXZn//85xYAw4YNW195rFdeeWXZmWeeeUis8lohm/gRaYd7g+sU3LxqJ4Ip3lonAg6O3s6q8nVFZBkwE3eW3QxUY/JPVBNbpaWlcvfdd//v6aefbjl69Oji9PR0veOOO9rm5+dnZWZmaqdOnXYCvPbaa43y8/MbLVmyZOOSJUsanHDCCV3Wrl2bBvDUU0+1uvjii9eNHj16bazzWiGb2BFpgyvfSPRjdSPWsBBc1s7AEPcVKQLeAd4C3kZ1lbd0psaWLl2a8Ytf/KJtYWFhgwULFhywcOHChitWrPjvmWee2Rlg4MCBm8aNG9dyypQpzXv37r111KhRa6dPn974lVdeWf7MM880B7j66qs3xCuvFbIJlkhn4BLgYtzpxIkiB/hx9AYi84HngedQXeYxl9mH008/fdvHH3+84aOPPsoaMGDApo8//nh7Zmam9uzZ8+t///vfzR588MHVubm5Xw8fPnxd//79D1m8eHFGy5Yty9q3b39E69atSwHGjBnTfs2aNfPjkdcK2dSdSHtcAV8C9PacJl56RG/3ITIbeA54HtXVfmOFXA2WqQXt1ltvLfnjH/9Y8eCDD7Zp27btzs8++yxj0aJFDTIyMipmzpzZsG/fvl+DO3192rRpjfv377+5uLg4ferUqcsABg4c2GnfzxAcK2RTOyLNcKPFS3G7nCXmZgw1kxu9PYTI+7jd255FdbPfWKakpCT16quvPujggw/emZ+fv6igoKDBkCFDOj700EMr27RpUzp48ODOkyZNWj5u3LgD+/fvv3nGjBmNJk6cuOK2227rkJub2xVg+fLlmVWPWXVJXNBstzezf0R64Lad/DHQ0HOaMNuCO1lkbDJPacybN6+wZ8+eMX8zbF9KS0tJT08HoKKigoqKCipPCKmoqCAl5fur2Hbu3CmZmZm1Ksd58+Yd2LNnz4Nr89hE3w7PBEFEEBmEO8tsHjAUK+PqNAZGAIsReQWRiOc8SauyjAFSUlK+KePKP+9Jbcu4rqyQzd6JZCIyFLc+959AP8+J6qMU4FzgXUQKELkSkYzqHmSSkxWy+T6RFESuAhYDTwDd/AZKGEcDE4DPEbk8YTdBNrVmhWy+S+Qs3GWJnsFddsgE72Dc1pwFiJzhOYsJEVtlYRyRXOC3uJM4THwcBUxD5B3gNlQLfAeKNREC3e1NFdvtzSQQkU7AA8BFvqMksf5APiLPA3egWug5T8IIcre3devWpZ5//vmdysvLadiwYcWrr766rEGDBoG++WdTFsnKzRPfAizAyjgMBHdizQJERiBiP5sBqNzt7bHHHmu9ePHiBi1btiyruttb69ate/zqV7/KOemkkw6dP39+1oABAzqtWrUqIzc3t2uvXr269u7du+uCBQuyAP7yl7+0uPnmm4tnzpy5ODs7u/Sll15qEnReGyEnI5HuwNPAcb6jmO/JAsYCFyPyE9vUqG6C3O3t9ttvL6k87rp169JycnLK9vK0tWa/hZOJSBoivwA+xso47E4EPkHkdkRs4FRLlbu9lZaWyujRo4tHjx5dnJ2dvSs/Pz9r+fLlGXvY7S2zcre3hx9+OOfhhx/Oyc3N7frQQw8dWHnMt99+O2vTpk1p/fv3D3yLVvsfnSxEjsGNinv6jmJqrAFwP3ARItegOs93oPom6N3eiouLU0eOHNlhypQpS2OR10bIyUBkDPARVsb11THAHERu9h2kvjn99NO3DR48eMOJJ564+dJLL103ePDgdVV3e+vXr9+2q666av3bb7+9BKDqbm/jx4/PHj9+fHZ2dnYPgB07dsh5553X+Z577lnVpUuXXbHIayPkRCbSBHciwvmek5i6SwceQaQP8BNUt/oOVBs1WaYWtKB2exs7duyBn376acP777+/9f3339966NCha4YOHRroXsm2uVCiEjkCeAl3bTqTWBYBg1H9zHeQ6vjeXKjqbm/33Xff/woKChqMGTOm/Z52e2vXrl3pvHnzDpg4ceKKzp07H9GmTZtd4HZ7KykpqfF+yHXZXMgKORGJXAr8BfeOvUlMW4BrUJ3sO8i++C5ksN3ejC8i6Yj8AXgWK+NE1xh4EZGHbRXGvtlubyb+RBoD04Cf+Y5i4moUMBUR2w41AVghJwKRVsC7wKm+oxgvzgDeQaSF7yCmbqyQ6zuRDrhL1Qe6aYupd/oAMxBp6zuIqT2be6rPRA4D3gTa+Y5iQqE7MBOR01H9wneYPcnLk0AHDpFI9RdNDXK3t+Li4tQPPvggq0+fPl+3bt3aTp02UW67zBlYGZvvOgh4Hwm2+Oqr3Xd7i54a/Z3d3srKyva421vlLTMzswLcEroBAwYc+uGHHzbs169fl9WrVwc+oLURcn0k0g+YCjTyHcWEkntPQeQsVN/3Hcanyt3eJkyYkN2tW7evc3Nzt1bd7W3FihWZQ4cOXfPee+81XrRoUcMBAwZ0Wr16dUZubm7X8vJyRISioqIMgNmzZx/w0EMPrezfv/+2DRs2pM2aNavhBRdcEOiVxa2Q6xs38nkVK2Ozb41xqy/6JfMeGEHu9nb22WdvBXj99dcbFRQUZD3wwAOrg85rhVyfiHQBXsf9sBlTnaa4K5KchGpMNsMJu8rd3p5++umWo0ePLk5PT9c77rijbX5+flZmZqbuYbe3jZW7va1duzYN4Kmnnmp18cUXrxs9evTaiooKnn322RZNmzYty8jICHytshVyfeHePX8L989RY2oqB3gTkRNRLfIdJt6C3u0tJSWFiRMnrrjpppvaTJo0qVnQe1nYm3r1gVtf+ibQwXcUUy91At5ApJnvIPEW5G5vd955Z864ceNaAmzcuDG1RYsW5UHntRFy2IlkAf/GLWkyprZ64OaUT0N1u68QNVmmFrSgdnsbOXJkybnnnttpwoQJB3br1m37+eefH+gbemCFHG7uumovYlf3MME4EXgekfNQrfAdJh6q7vaWn5+/qKCgoMGQIUM67mm3t/79+2+eMWNGo4kTJ6647bbbOuTm5nYFt9sbQKtWrco/+OCDxbHMa7u9hZnIPcDPfccwCedeVH8Rjyey3d72j80hh5XIQOBO3zFMQroTkXhdtKCioqJC4vRcexTP3d6ir7XW//qwQg4jkc7ARNyl4U3IrPQdoO4E+Fv01PtYW1BSUtLUdynHQ0VFhZSUlDQFFtT2GDaHHDYiB+Cu9JF074gHoRgYAOQBlwDluI2hnwcy9vGYC3HnoVdaBNwO/DP65yujH/8aPfYVAWb2pBEwGZFjUf06Vk9SVlb206KioieLioqOIPEHgBXAgrKysp/W9gA2hxw2In8FhviOUV9dAcwBRgCHAqcB1wNnAoP2cP8NwKXAGqAg+rWlwE3AVlz5AvwUUGAo0IKEui7W31C9svq7mXhI9N9Y9YvIMKyMa+0/uNFwDjAcV8YAJUD2Xh6Tihs9N6nytca4f6JUpbjhz2ISqowBhiByje8QxrFCDguRTsAjvmPUV7uAe4AHdvv6LNwouM9eHtcEd35xVdlA5m5fa4kr5TXAydGPCeT30X21jWdWyGEgIriLktpleGrpAdyouOrE+3rc9ayeDuD4vwNOB0qBwcD0AI4ZIo2BJ3yHMFbIYTEUu/xSnbwNPA5EgE+Aa4CLgPtxGwTXVTluaYLgRs8JeFbFGYhc5TtEsrNC9k2kHfCg7xj13XTcG3B5wFHAsbg36e7DlfTzwEJqf5bN+8APgb7AYyTsqZOPIJLjO0Qys1UWvom8BpzlO4YxUS+jOth3iGRlI2SfRK7AytiEy/mIXOQ7RLKyEbIvIi2BL3DLWo0JkzVAV1Q3+g6SbGyE7M+vsDI24ZSNO1HRxJmNkH1wl2JaAKRXd1djPNkBHIrqV76DJBMbIfvxO6yMTbg1AH7tO0SysUKOMxFOaMWaDnn0W+g7izHVuBIRu1JNHNmURZyJ8C5uaSyHsHjWvxjU5jA+C+LcBWNi4V+onus7RLKwQo4jEX6Iu3J0FVp6Ah/MeokLDsuh2K4obcLoZFTf9x0iGVghx5EIHwG5e/5b3Xohk/Of5prejdnaKK7BjNm3maie5DtEMrA55DgR4Sz2WsYA0mgyF0WasXH7LTw0fRfppXELZ8y+nYjI8b5DJAMr5PgZUZM7VZDa6hFu6duIravHMmJWrEMZU0MjfQdIBjZlEQcidMbtbb7f1xVrzOaFE7li17n866jgkxlTY2VAJ1QT4JKC4WUj5Pi4nlpesHQLTbqfxz+PastX+XPovTjgXMbUVBpwo+8Qic5GyDEmQgNgFYGcJq0VR/LfD17hvI6dWN627sczZr9sANqjus13kERlI+TYu4TA9qyQlP/S46TOLD3wdN54by0tNwRzXGNqpDnfXoDbxICNkGNMhNm4/dKDPzYVm65iwiePc8NxB7CjQSyew5jdfA4chhVHTNgIOYZE6E2MyhhASWn6DNf0a8yWDXfxq/fLSUnAKwuZkOkK2JrkGLFCjq3h8XiSctJa/5q7TmrE1mVPc/WceDynSWo/8h0gUdmURYyI0AxYDRwQ7+duwbp5z/Oj1B/yzhHxfm6TFIqBtqiW+w6SaGyEHDtn46GMAdbTsudpvH1EZ5Z8uIDDl/vIYBLaD4BTfIdIRFbIsTPQd4BldO5zJP9t34dZM1bRZo3vPCahXOI7QCKyKYsYECENKAGa+c7yLd12Pi/nT+CqY5qwpbHvNKbe2wD8AFXbcyVANkKOjZMIVRkDSNbLDO7XjI07RzB2+k4ydvlOZOq15sAZvkMkGivk2PA+XbE3SsqBjzGib2O2FD3ELR9UIPZPJFNbF/kOkGhsyiIGRPgMt14z9BqxZdEzXL39Ql46xncWU++sQrWd7xCJxAo5YCIcgtvZrV7J4X9zpzC40fF8WC9+kZjQ6IJqvft+DyubsgjeOb4D1EYRrXudwAddDmfBzCV0tku/m5qy5W8BskIOXmjnj6snspDDTzyUxdmn8s57JRy43nciE3pWyAGyKYsARbfa3Ayk+84SDN18OX8v+BPX5WbxdUPfaUwoFaHa2neIRGEj5GAdScKUMYA0+TtXRJqyafOd3DujjFQ7VdbsLgeRbr5DJAor5GAl5GWWyknL+Q13ntyIrYVPMHS27zwmdGzaIiBWyME62neAWNpJg87DeCK3OevnT+OM//rOY0LjRN8BEoUVcrAScoS8u40073Em0448mOUffULPpb7zGO9sV8GA2Jt6AREhBdgENPKdJb60vBdzP3iZ8w9tz1c5vtMYL3YAjWw7zrqzEXJwDiHpyhhAUufS++QOrGgyiH++t5Gmm3wnMnHXAOjkO0QisEIOTkLPH1dPGr7KoH4tWF8+nMffs82Lks7hvgMkAivk4CTF/HF1lJQW4xnerxFb1zzAGNu8KHlYIQfACjk4VshVlJHe7g4eOKExW76YxCVzfecxMWeFHAB7Uy8gIhQCB/nOEVbZFBe8xAUHnMTMw3xnMTExH9WevkPUd1bIARFhJ5DhO0e4qXbl81n/5Nx2Xfmig+80JlBfo5rlO0R9Z4UcABEOxF2yydSI7urL9A9f4OLuP2DNgb7TmMA0QnWb7xD1mc0hB8M2V9kvkjGdfn1zKMq8lGfztpJlP8SJoZXvAPWdFXIw2vgOUD9J4+e4NNKUTdvG8MD0UtLKfCcydWKFXEdWyMHI9h2gPqsgNft3jOnbiK0rH2f4h77zmFqzQq4jK+RgNPcdIBHsIrPjjTzepxkbFrzGWfN85zH7zQYmdWSFHAwr5ABtotkRA3mtZ3tWzC7g6CW+85gasxFyHVkhB8MKOQa+on1uL+Z2OpqC9ws56H++85hqWSHXkRVyMKyQY0ZSPuHokzqyvPmZ/DtvA81s86LwauY7QH1nhRwMu95czEmDaZwZack6HcoT7+0gc6fvROZ70nwHqO+skINhy7XiRElp9iRD+zVmy9p7uXNmOSkVvjOZb6T6DlDfWSEHw7aajLMy0tv+gntPbMyWJRO5PN93HgPYCLnO7D9gMEp9B0hW22nYZQgT2XX/Z9O6HpZvZ0x6lL6Ftcf5DlHPWSEHwwrZoxYtVpd0Oi7/lDIh03eWZFbWFFs7Xkc2ZREMm7Lw6Gc/u+lTsTIOA/s5qCMr5GDYCNmT9PQdO/v2nWKbo4eD/RzUkRVyMOwb0ZNLL/3tnJSUCjshIRzs56COrJCDYd+Inlx66W9t/4TwsCmLOrJCDoZ9I3pw0klTPmnQYHsX3znMN2xf6zqyQg7GVt8BktGNN95svwjD5UvfAeo7K+RgrPAdINl06LDoy+zsFb195zDfUeg7QH1nhRyMQt8Bks2oUcMKRez7N2QKfQeo7+wbOhiFvgMkk6ysjZt69JjRy3cO8x3lwErfIeo7K+QAqLIe2Ow7R7IYNmzMJyI08p3DfMeqSERtk606skIOjr2hEQcpKWXlZ575dGffOcz3FPoOkAiskINT6DtAMhg06E9z0tLK2vnOYb6n0HeARGCFHJxC3wGSwTXX/DLLdwazR4W+AyQCK+TgFPoOUDPrgbeAtTW8fzFhORGxR4/3FjZuvOFI3znMHhX6DpAIrJCDE8c55E3AmcDpwPl8e6LgcODVfTxuAzAQmA2cApTs5VjjgGNxJ169AaQH/gpq4+abh2/wncHsVaHvAInA9kMOzqL4PdU/gFHAacD1wDTcdVaLgHP28bj5wCNAH1w5FwBL93CsT4CfAnOAcMwQtGq1suiggxbm+s5h9qrQd4BEYCPk4CzCtVwcDMcVKLhRbnNgKHAw8M99PK4froyn40bJx+/hWNmA4qYp3sSNnv276aYbPxcJyVDd7G4rtgY5EFbIAVFFgVnxfdZZuN8BXwDdgdtwRfvYPh6jwPO4Eq/ab5XH6oObvpgKtAMGAe8GHXy/ZGR8vf3441+1uePwmmlrkINhhRys9+P3VOuBnwFPAx8D1wI5wOXsu0AFeBzoAfxrD8cC+BFwF9AMOBt4Kdjo+2nIkHvzU1K0hdcQZl/8/sZOIFbIwZoZn6fZBVwE3A8cBBwCLIv+XX70a3vyW+Bv0c834gp392NVWgx0BjKBigCz778LL3y0jdcApjpWyAGxQg7WHOKyRuwp3Bty9wER3PTDu0Bf4I/AaGAh8PPdHnctMDF6v3Lc1MTux3oedxZ4Dm4a5AnghzF8Lft2yinPzc3M3GFn5oXXZmCu7xCJQlTVd4aEIsKHgF0NPSAvvtg2/8ADV9s2m+H1WiSiA32HSBQ2Qg5enKYtEl+nTvOWtWy52nZ1C7c83wESiRVy8OL4xl5iGzXqulUiiO8cZp9s/jhAVsjBsxFyAJo0Wbuhe/cPbXQcbhtxS3xMQKyQA6bKGtypbqYOrr9+9HwRGvrOYfZpeiSifpfgJBgr5Njwu3C3nktNLS077bS/29Wkw8+mKwJmhRwbVsh1MHjwY7NTU8tb+85hqmWFHDBb9hYjIiwEDvOdoz6aOrXJp1lZWw73ncPs0xeRiHb1HSLRJOwIWUTuFpFTROQ+EbldRBqLyBsiklrlPmkiMiX6+bMiklflNrWOESbX8fFJqVevtxZYGdcLT/kOkIgSspBFpBHuDKLjcduXHYo7L3ibqpaLSIqIpKpqGZARfVi6qkYqb8CO6LGaisjrIvKmiLwsIhnff8Y9mhToi0oSN910wxbfGUy1SoG/+g6RiBKykIGmQEvgDqAb7vIYNwKHiMh04CtgtIi8ARwrIpOBDtGR8YzofY6JHuvHwCOqejpuw+EBNQmgyiLslNL9kpOzfHW7douP9Z3DVGtqJKLFvkMkokQt5HLc5sAP48o3B3c6853AMOAFVf2tqp6B23/ij8Dy6Mj4j8B4Ve0EoKp/VNW3osdtBazZjxwT6/5SksfNNw9fLGIXTagHbLoiRhK1kNOAX+M2/H0EeBT4H9AL6EB0azQR6QecDHQCuonI27hR9R3R0fK1lQcUkeOB5qr64X7kmATYPrE10KDB1m3HHvtGT985TLW+wl1WxsRAoo5GDgLuxc0d9wSOAjoCU6J//7qIDAEuBGao6pMi0k9VrxCRCwFU9Zs35USkBW7X9wv2J4Qqa0SYhruQndmHq666a66I9vWdw1RrQiSi5b5DJKqEHCGr6kzgBeAd4O/AP1S1FLfP5Hm4aYoXgXMBRKQDsFZEluLmmm8UkVXRv8uI3vcOVa3NhUwfruPLSQIVOnjwY+19pzDVUmy6IqYSspCj/oQr5J8DR4hIR+BwYCdwjKpuV7cIW3GXYP4PMKfKKosZ0eP8BPcG353RaYwf7U8IVfJw11Uye3H66RPz09N3dfSdw1TrnUhEC32HSGQJeWKIiDQHxuPmin+D22n9d7id24txa4Qvw+3Y/hVuSuM64HNgRfQwXVU1kLPFRLgAW5e8Vy+9lFPQokXxMdXf03h2SSSiz/sOkcgSspDBnfQRXWeMiAiQourmvkREdA8vXETSo1MbAWchBXdVatufYTdduuQv/vOfjz3Udw5TrXVA20hEd/oOksgSdsqisoyjn2tlGVf+eS+Picnll1SpAB6KxbHru1GjrrP1rPXDeCvj2EvYQg6hv+FOLDFRzZqtWdely1y7PFP4bcTenI4LK+Q4UWUnMNZ3jjC54YaR/xWhge8cploPRyK60XeIZJCwc8hhJEJT3JuGTXxn8S0tbeeuadMabkhNrfiB7yxmn9YCHSMR3eo7SDKwEXIcqbIJt/oj6V188SNzwlrGmzdDfj5s2hTb51m/HsrCfx7nb62M48cKOf5+g80lc/nl97XwnWFPtmyB//s/+OwzuPlm2LjRFeeIEft+XEkJXHQRjBzpbhs3umPdfjsMGwYPR2dgX34ZrrsOtm+HOXMgLdznyq4GHvcdIpmE+9shAamyWYQxJPH2hccd99q8Aw7YFsp9K5YuheHDoXt3V6gFBTBtGuzYse/HLVoEl18O55777ddeegn694fTToN77oHPP4clS+Css9znDcI/e/5/kYhu9x0imdgI2Y+JJPHVqUeM+Fk19ebPUUe5Mp43z42SjzsOfvlLaFjN5VYXLoTXXoNrr4W//MV9rUkTKCyErVvdCLpVK1CF8nI3Oj7uuJi/nLrIx60MMnFkheyBKgrcgNsmNKm0bfvFytatl4d6z2NVePddaNTITSk0alT9Y447Dn7/exg/3pXz0qVw5JFQVORGyh06uILu3RtmzXLlfOed8PHHsX89tXRzJGLv+MebFbInqszD7beRVEaNun5Z9MzF0BJx88CdO8PMGv475vDD3Sg6NRUOOQS++gr++lcYNQquvNIV8uuvw6mnwlVXuZLv0wemT4/pS6mtyZGIvu87RDIK9Q9GEvg5UOI7RLw0bLh5y9FH/+do3zn2ZdIkeOMN9/nWrTUbHQPcdhusW+fmmvPzoWNH9/hly9wUxaJFrug1TrYKAAAI30lEQVTBlXWbNpCeDhUVsXkddbADuM13iGRlheyRKhtxG+InhZ/85M6PRcK9BnvgQHjrLbjpJlekx+5hcqWgwK2WqOrKK92qjBtugEGD3Ij4ssvc6oqBA90bhP37w7Zt0KIFHHwwTJ0KvXrF5WXtj1sjEV3uO0SyshNDPBNBgFm4S0wlLJHyijfeOGBlenrpQb6zmL16LRJRu5iCRzZC9iz6Bt+1RK9ynajOOuvpOVbGoVYMXO07RLKzQg4BVeYDo3zniKWhQ+8I/6rb5KXAVZGIJs37GWFlhRwSqozHXSoq4XTvPuvzpk3XhfJEEAPAHyIRtQuXhoAVcrj8FFjqO0TQRo26zkZe4TUfGOM7hHGskENElc3Aj4BdvrMEpUWL1SWdOs3P9Z3D7NEO4DLbeD48rJBDRpW5wK2+cwRlxIgRC0XI8J3D7NHoSEQ/9R3CfMuWvYWUCFOA833nqIv09B07p03L2pySUtHKdxbzPVMjET3HdwjzXTZCDq9rgELfIerisssemGNlHEorcd9fJmRshBxiIvQC3gOyfGepjddfb/hFgwbb7Urb4bIWODkS0c98BzHfZyPkEIvOJ18MhP+6Ers56aQpn1gZh85W4Cwr4/CyQg45Vf4NXOc7x/668caRCbNSJEHsAs6LRHSO7yBm76yQ6wFVngLu8p2jpjp0WPRldvbKUO95nGQqgB9HIvqO7yBm36yQ6wlVfg2M852jJm65ZdiX0U2TTDhcH4noZN8hTPWskOuXEcAzvkPsS1bWxk1HHjnjGN85zDfujET0Cd8hTM1YIdcj0Z3hfgq84DvL3lx33W2fiFDDbd1NjD0aiehvfIcwNWeFXM+oUgFcDvzLd5bdpaSUlQ8Y8Exn3zkM4C5QeovvEGb/WCHXQ6qUAhcAT/rOUtWgQX+ak5ZW1s53DsNzwE/sIqX1jxVyPaVKmSpDgV/5zlLpmmt+0dB3BsPduA2D6t3adQNpvgOYulHlbhFWAH/B4//Pnj3zFjZuvLGHr+c37MSNiv/hO4ipPRshJwBVJgBnA1t8ZRg5cvhGX89tKAH6WxnXf1bICUKVN4F+wP/i/dytWq0sOuigRXYiiB+LgOMiEZ3pO4ipOyvkBKLKx8DxuB/SuBk58obPRUiP53MaAN4Cjo9EdLnvICYYVsgJRpUvgROBqfF4voyMr7f36TP1yHg8l/mOP+E2CtrkO4gJjhVyAlJlgyrnADcA22P5XEOG3JufkqItYvkc5jsqgJsjEb3eVlIkHtsPOcGJ0B2YBMRkBcS0aQcszczcYSeDxMdXwNWRiL7tO4iJDRshJzhVFgK5wO+BQH/7nnrqpLlWxnHzN+AIK+PEZiPkJCLCGcAEICeI4734Ytv8Aw9c3TuIY5m9KgGGRSL6su8gJvZshJxEVHkDOBJ4ta7H6tRp3rKWLVf3qnsqsw8v4UbFVsZJwgo5yaiyVpVBwBXAqtoe55Zbhq2yPY9j5kvgnEhEL4xEdI3vMCZ+rJCTlCp/B7oAvwa+3p/HNmmydsNhh31ko+PglQEPAYdHIhqXZYsmXKyQk5gqX6tyF9AV+Ds1fNPv+utHzxfBNhIK1iygdySit0Yius13GOOHvalnviHCsbjVGCfs7T6pqaVlb7xxQElqannr+CVLaDOBeyIRfcN3EOOf7fZmvqHKHOBEEX4E/BY4aPf7DB78h9mpqeV7LWxTY3m4Iv5PbR4sIncD7wI/xG0q9TgwGThLVcuj90kDXlDVwSLyLNCmyiG2qurA6P1aAL2Aj1V1bS1fjwmATVmY71HleaAbMBxYWvXvrrzy1029hEocbwInRyJ6Sh3KuBGwGbdvSTZwKO6X5zZVLReRFBFJVdUyICP6sHRVjVTegB3RYzXHnWafC7wrIq3q8uJM3dgI2eyRKjuA8SL8GRgM3Nar11sNsrK22L4VtTMVuDcS0Y8COFZToCVwI/AJ8EH080NEZDpwCDBWRE4FjhKRyUB7EckDUnHvFVRe2aUHMEpVP4yW8zGATZ94YnPIpsbGju17Qs+eM24Czgfb3a0GFHgZV8QfB3VQEckBHgU+x70huwtXrL8ElgDDVHVk9L5TgUeAa1X1EhG5FEBVJ+12zL7AvcBAVd0cVFazf6yQzX7Ly5McYChwLd+OtMy3PsVd1+65SESXBH1wEWkHNMKtJX8FKAV+A8zGrdboqqp/EJF+uIvh3oIbQa/FTXEArAeeVdUnRESAcbj/l5eoakw3pDJ7Z4Vsai0vT1KBQbirYJ8GNPabyKslwPO4El4QyycSkRNxo9lDcVMWRwEdgSnAXOB13Mj5QiBFVQeKyERVvUJELgRQ1cl7OO49wAJVfT6W+c3e2RyyqbVIRMtx/yR/OS9PMnBXLDkHGIgriES3EngBV8L58XpSVZ0pIi8AfXDl+6mqlopIAXAe7kKn84GJwKsi0gFYKyJLo5kRkbGq2lZExgD/U9W/Ac0AuxSXRzZCNjGRlyfdccU8ELeuOdVvosAUAy/iRsMzIxE/P0DRaYYrgNtwp1rfCDwItAduUHW/IETkVdxyuPXAj1X1kujXn4vOKTfH/VLJBBZEH2ul4IkVsom5vDxpAZyJK+czgOZ+E9XYTtyUwGxgTvTjF75KuFK0RMcDy3Bzx92B3wGjcb8wJgOX4eb4v8JNaVyHexNwRfQwXVXVTu4JGStkE1d5eSK4NbOHV7l1Bw4DsjxGqwA+w5VuZQHPi0S01GOmvRKRtOg648rRckqVE0JkT6NcEUlXDefrMY4VsgmFaFEfzLcFXVnWh+LeLAxiZ7ldwOrobVX04wqgAJgbieiWAJ7DmFqzQjahFy3rA3Aj6IbRj3v7PBN3KvHGKrdNuDnU9b6nG4zZFytkY4wJCdvLwhhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQsIK2RhjQuL/AdkDAUtNoYVZAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "数据名 = ['数据1','数据2','数据3']\n", "数据值 = [16,10,12]\n", "plt.pie(数据值, labels=数据名, autopct='%1.2f%%',colors=['r','b','y'])\n", "\n", "# 显示正圆\n", "plt.axis('equal')\n", "plt.legend(loc='best')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "可以使用plt.annotate('注释文本', \n", " xy=(1,2), # 箭头位置\n", " arrowprops=dict(arrowstyle='->'), # 自定义箭头样式\n", " xytext=(3,4) # 文本位置\n", " ) # 生成带指向的注释\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" } }, "nbformat": 4, "nbformat_minor": 2 }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)