线性回归与梯度下降法

  • 一元线性回归

①基本假设:    

y = w0 + w1x + ε 其中 w0,w1 为回归系数,ε 为随机误差项(noise)

给定样本集合 D = { (x1,y1),…,(xn,yn)},

我们的目标是找到一条直线 y = w0 + w1x ,使得所有样本点尽可能落在它的附近,即求解以下问题:

 

 ②一元线性回归的参数估计:

 

 一元线性回归可以解出精确解。不需要求近似解。

 

  • 多元线性回归

 

 

 

 

 

 注意,当不满秩时,就需要用梯度下降法来求近似解。

  • 梯度下降法求解多元线性回归问题:

 

posted @ 2020-03-09 17:28  从前有座山,山上  阅读(334)  评论(0编辑  收藏  举报