R 《回归分析与线性统计模型》page121,4.4
rm(list = ls()) A = read.xlsx("xiti_4.xlsx",sheet = 4) names(A) = c("ord","x","y")
#进行回归 attach(A) fm = lm(y~x) summary(fm) coef(fm)
#回归残差关于x的散点图 plot(x,resid(fm))
成发射状,意味着方差随着x的增加而变大
#尝试用加权最小二乘 #先分类(可以聚类、手动分类) plot(x)
根据变量x的图像,手动分为三类(1-4,5-7,8-11)
detach(A)
#计算权重 se = deviance(fm)/11 #权重的分母项 #S1 A1 = A[c(1:4),] lm1 = lm(A1$y~A1$x) sig1 = deviance(lm1)/lm1$df csq1 = sig1/se #第一类的权重 #S2 A2 = A[c(5:7),] lm2 = lm(A2$y~A2$x) sig2 = deviance(lm2)/lm2$df csq2 = sig2/se #第二类的权重 #S3 A3 = A[c(8:11),] lm3 = lm(A3$y~A3$x) sig3 = deviance(lm3)/lm3$df csq3 = sig3/se #第三类的权重 sig = c(sig1,sig2,sig3) #各类σ^2 csq = c(csq1,csq2,csq3) #权重向量 #加权最小二乘法分析 Y = c(A1$y/csq[1],A2$y/csq[2],A3$y/csq[3]) X = c(A1$x/csq[1],A2$x/csq[2],A3$x/csq[3]) lm.res = lm(Y~X) summary(lm.res) plot(X,resid(lm.res))